The title “Regents’ Professor” is the highest faculty honor awarded at Arizona State University. It is conferred on ASU faculty who have made pioneering contributions in their areas of expertise, who have achieved a sustained level of distinction, and who enjoy national and international recognition for these accomplishments. This collection contains primarily open access works by ASU Regents' Professors.

Displaying 1 - 10 of 10
Filtering by

Clear all filters

130298-Thumbnail Image.png
Description
The advent and application of the X-ray free-electron laser (XFEL) has uncovered the structures of proteins that could not previously be solved using traditional crystallography. While this new technology is powerful, optimization of the process is still needed to improve data quality and analysis efficiency. One area is sample heterogeneity,

The advent and application of the X-ray free-electron laser (XFEL) has uncovered the structures of proteins that could not previously be solved using traditional crystallography. While this new technology is powerful, optimization of the process is still needed to improve data quality and analysis efficiency. One area is sample heterogeneity, where variations in crystal size (among other factors) lead to the requirement of large data sets (and thus 10–100 mg of protein) for determining accurate structure factors. To decrease sample dispersity, we developed a high-throughput microfluidic sorter operating on the principle of dielectrophoresis, whereby polydisperse particles can be transported into various fluid streams for size fractionation. Using this microsorter, we isolated several milliliters of photosystem I nanocrystal fractions ranging from 200 to 600 nm in size as characterized by dynamic light scattering, nanoparticle tracking, and electron microscopy. Sorted nanocrystals were delivered in a liquid jet via the gas dynamic virtual nozzle into the path of the XFEL at the Linac Coherent Light Source. We obtained diffraction to ∼4 Å resolution, indicating that the small crystals were not damaged by the sorting process. We also observed the shape transforms of photosystem I nanocrystals, demonstrating that our device can optimize data collection for the shape transform-based phasing method. Using simulations, we show that narrow crystal size distributions can significantly improve merged data quality in serial crystallography. From this proof-of-concept work, we expect that the automated size-sorting of protein crystals will become an important step for sample production by reducing the amount of protein needed for a high quality final structure and the development of novel phasing methods that exploit inter-Bragg reflection intensities or use variations in beam intensity for radiation damage-induced phasing. This method will also permit an analysis of the dependence of crystal quality on crystal size.
ContributorsAbdallah, Bahige (Author) / Zatsepin, Nadia (Author) / Roy Chowdhury, Shatabdi (Author) / Coe, Jesse (Author) / Conrad, Chelsie (Author) / Dorner, Katerina (Author) / Sierra, Raymond G. (Author) / Stevenson, Hilary P. (Author) / Camacho Alanis, Fernanda (Author) / Grant, Thomas D. (Author) / Nelson, Garrett (Author) / James, Daniel (Author) / Calero, Guillermo (Author) / Wachter, Rebekka (Author) / Spence, John (Author) / Weierstall, Uwe (Author) / Fromme, Petra (Author) / Ros, Alexandra (Author) / Department of Chemistry and Biochemistry (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / Department of Physics (Contributor)
Created2015-08-19
130291-Thumbnail Image.png
Description
pH and fermentable substrates impose selective pressures on gut microbial communities and their metabolisms. We evaluated the relative contributions of pH, alkalinity, and substrate on microbial community structure, metabolism, and functional interactions using triplicate batch cultures started from fecal slurry and incubated with an initial pH of 6.0, 6.5, or

pH and fermentable substrates impose selective pressures on gut microbial communities and their metabolisms. We evaluated the relative contributions of pH, alkalinity, and substrate on microbial community structure, metabolism, and functional interactions using triplicate batch cultures started from fecal slurry and incubated with an initial pH of 6.0, 6.5, or 6.9 and 10 mM glucose, fructose, or cellobiose as the carbon substrate. We analyzed 16S rRNA gene sequences and fermentation products. Microbial diversity was driven by both pH and substrate type. Due to insufficient alkalinity, a drop in pH from 6.0 to ~4.5 clustered pH 6.0 cultures together and distant from pH 6.5 and 6.9 cultures, which experienced only small pH drops. Cellobiose yielded more acidity than alkalinity due to the amount of fermentable carbon, which moved cellobiose pH 6.5 cultures away from other pH 6.5 cultures. The impact of pH on microbial community structure was reflected by fermentative metabolism. Lactate accumulation occurred in pH 6.0 cultures, whereas propionate and acetate accumulations were observed in pH 6.5 and 6.9 cultures and independently from the type of substrate provided. Finally, pH had an impact on the interactions between lactate-producing and -consuming communities. Lactate-producing Streptococcus dominated pH 6.0 cultures, and acetate- and propionate-producing Veillonella, Bacteroides, and Escherichia dominated the cultures started at pH 6.5 and 6.9. Acid inhibition on lactate-consuming species led to lactate accumulation. Our results provide insights into pH-derived changes in fermenting microbiota and metabolisms in the human gut.
Created2017-05-03
130279-Thumbnail Image.png
Description
Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer

Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advanced Photon Source (APS), are reported. Microcrystals (5–20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A[subscript 2A] adenosine receptor (A[subscript 2A]AR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A[subscript 2A]AR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A[subscript 2A]AR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5–20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS-U upgrade will increase the intensity by two orders of magnitude. These developments will enable structure determination from smaller and/or weakly diffracting microcrystals.
ContributorsMartin Garcia, Jose Manuel (Author) / Conrad, Chelsie (Author) / Nelson, Garrett (Author) / Stander, Natasha (Author) / Zatsepin, Nadia (Author) / Zook, James (Author) / Zhu, Lan (Author) / Geiger, James (Author) / Chun, Eugene (Author) / Kissick, David (Author) / Hilgart, Mark C. (Author) / Ogata, Craig (Author) / Ishchenko, Andrii (Author) / Nagaratnam, Nirupa (Author) / Roy Chowdhury, Shatabdi (Author) / Coe, Jesse (Author) / Subramanian, Ganesh (Author) / Schaffer, Alexander (Author) / James, Daniel (Author) / Ketwala, Gihan (Author) / Venugopalan, Nagarajan (Author) / Xu, Shenglan (Author) / Corcoran, Stephen (Author) / Ferguson, Dale (Author) / Weierstall, Uwe (Author) / Spence, John (Author) / Cherezov, Vadim (Author) / Fromme, Petra (Author) / Fischetti, Robert F. (Author) / Liu, Wei (Author) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / Department of Physics (Contributor)
Created2017-05-24
130259-Thumbnail Image.png
Description
Background
Syngas fermentation, the bioconversion of CO, CO[subscript 2], and H[subscript 2] to biofuels and chemicals, has undergone considerable optimization for industrial applications. Even more, full-scale plants for ethanol production from syngas fermentation by pure cultures are being built worldwide. The composition of syngas depends on the feedstock gasified and the

Background
Syngas fermentation, the bioconversion of CO, CO[subscript 2], and H[subscript 2] to biofuels and chemicals, has undergone considerable optimization for industrial applications. Even more, full-scale plants for ethanol production from syngas fermentation by pure cultures are being built worldwide. The composition of syngas depends on the feedstock gasified and the gasification conditions. However, it remains unclear how different syngas mixtures affect the metabolism of carboxidotrophs, including the ethanol/acetate ratios. In addition, the potential application of mixed cultures in syngas fermentation and their advantages over pure cultures have not been deeply explored. In this work, the effects of CO[subscript 2] and H[subscript 2] on the CO metabolism by pure and mixed cultures were studied and compared. For this, a CO-enriched mixed culture and two isolated carboxidotrophs were grown with different combinations of syngas components (CO, CO:H[subscript 2], CO:CO[subscript 2], or CO:CO[subscript 2]:H[subscript 2]).
Results
The CO metabolism of the mixed culture was somehow affected by the addition of CO[subscript 2] and/or H[subscript 2], but the pure cultures were more sensitive to changes in gas composition than the mixed culture. CO[subscript 2] inhibited CO oxidation by the Pleomorphomonas-like isolate and decreased the ethanol/acetate ratio by the Acetobacterium-like isolate. H[subscript 2] did not inhibit ethanol or H[subscript 2] production by the Acetobacterium and Pleomorphomonas isolates, respectively, but decreased their CO consumption rates. As part of the mixed culture, these isolates, together with other microorganisms, consumed H[subscript 2] and CO[subscript 2] (along with CO) for all conditions tested and at similar CO consumption rates (2.6 ± 0.6 mmol CO L[superscript −1] day[superscript −1]), while maintaining overall function (acetate production). Providing a continuous supply of CO by membrane diffusion caused the mixed culture to switch from acetate to ethanol production, presumably due to the increased supply of electron donor. In parallel with this change in metabolic function, the structure of the microbial community became dominated by Geosporobacter phylotypes, instead of Acetobacterium and Pleomorphomonas phylotypes.
Conclusions
These results provide evidence for the potential of mixed-culture syngas fermentation, since the CO-enriched mixed culture showed high functional redundancy, was resilient to changes in syngas composition, and was capable of producing acetate or ethanol as main products of CO metabolism.
Created2017-09-16
130326-Thumbnail Image.png
Description

Inhibition by ammonium at concentrations above 1000 mgN/L is known to harm the methanogenesis phase of anaerobic digestion. We anaerobically digested swine waste and achieved steady state COD-removal efficiency of around 52% with no fatty-acid or H[subscript 2] accumulation. As the anaerobic microbial community adapted to the gradual increase of total

Inhibition by ammonium at concentrations above 1000 mgN/L is known to harm the methanogenesis phase of anaerobic digestion. We anaerobically digested swine waste and achieved steady state COD-removal efficiency of around 52% with no fatty-acid or H[subscript 2] accumulation. As the anaerobic microbial community adapted to the gradual increase of total ammonia-N (NH[subscript 3]-N) from 890 ± 295 to 2040 ± 30 mg/L, the Bacterial and Archaeal communities became less diverse. Phylotypes most closely related to hydrogenotrophic Methanoculleus (36.4%) and Methanobrevibacter (11.6%), along with acetoclastic Methanosaeta (29.3%), became the most abundant Archaeal sequences during acclimation. This was accompanied by a sharp increase in the relative abundances of phylotypes most closely related to acetogens and fatty-acid producers (Clostridium, Coprococcus, and Sphaerochaeta) and syntrophic fatty-acid Bacteria (Syntrophomonas, Clostridium, Clostridiaceae species, and Cloacamonaceae species) that have metabolic capabilities for butyrate and propionate fermentation, as well as for reverse acetogenesis. Our results provide evidence countering a prevailing theory that acetoclastic methanogens are selectively inhibited when the total ammonia-N concentration is greater than ~1000 mgN/L. Instead, acetoclastic and hydrogenotrophic methanogens coexisted in the presence of total ammonia-N of ~2000 mgN/L by establishing syntrophic relationships with fatty-acid fermenters, as well as homoacetogens able to carry out forward and reverse acetogenesis.

Created2016-08-11
130315-Thumbnail Image.png
Description
Phytochromes are a family of photoreceptors that control light responses of plants, fungi and bacteria. A sequence of structural changes, which is not yet fully understood, leads to activation of an output domain. Time-resolved serial femtosecond crystallography (SFX) can potentially shine light on these conformational changes. Here we report the

Phytochromes are a family of photoreceptors that control light responses of plants, fungi and bacteria. A sequence of structural changes, which is not yet fully understood, leads to activation of an output domain. Time-resolved serial femtosecond crystallography (SFX) can potentially shine light on these conformational changes. Here we report the room temperature crystal structure of the chromophore-binding domains of the Deinococcus radiodurans phytochrome at 2.1 Å resolution. The structure was obtained by serial femtosecond X-ray crystallography from microcrystals at an X-ray free electron laser. We find overall good agreement compared to a crystal structure at 1.35 Å resolution derived from conventional crystallography at cryogenic temperatures, which we also report here. The thioether linkage between chromophore and protein is subject to positional ambiguity at the synchrotron, but is fully resolved with SFX. The study paves the way for time-resolved structural investigations of the phytochrome photocycle with time-resolved SFX.
ContributorsEdlund, Petra (Author) / Takala, Heikki (Author) / Claesson, Elin (Author) / Henry, Leocadie (Author) / Dods, Robert (Author) / Lehtivuori, Heli (Author) / Panman, Matthijs (Author) / Pande, Kanupriya (Author) / White, Thomas (Author) / Nakane, Takanori (Author) / Berntsson, Oskar (Author) / Gustavsson, Emil (Author) / Bath, Petra (Author) / Modi, Vaibhav (Author) / Roy Chowdhury, Shatabdi (Author) / Zook, James (Author) / Berntsen, Peter (Author) / Pandey, Suraj (Author) / Poudyal, Ishwor (Author) / Tenboer, Jason (Author) / Kupitz, Christopher (Author) / Barty, Anton (Author) / Fromme, Petra (Author) / Koralek, Jake D. (Author) / Tanaka, Tomoyuki (Author) / Spence, John (Author) / Liang, Mengning (Author) / Hunter, Mark S. (Author) / Boutet, Sebastien (Author) / Nango, Eriko (Author) / Moffat, Keith (Author) / Groenhof, Gerrit (Author) / Ihalainen, Janne (Author) / Stojkovic, Emina A. (Author) / Schmidt, Marius (Author) / Westenhoff, Sebastian (Author) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / Department of Physics (Contributor)
Created2016-10-19
130308-Thumbnail Image.png
Description
Serial femtosecond crystallography (SFX) has opened a new era in crystallo­graphy by permitting nearly damage-free, room-temperature structure determination of challenging proteins such as membrane proteins. In SFX, femtosecond X-ray free-electron laser pulses produce diffraction snapshots from nanocrystals and microcrystals delivered in a liquid jet, which leads to high protein consumption.

Serial femtosecond crystallography (SFX) has opened a new era in crystallo­graphy by permitting nearly damage-free, room-temperature structure determination of challenging proteins such as membrane proteins. In SFX, femtosecond X-ray free-electron laser pulses produce diffraction snapshots from nanocrystals and microcrystals delivered in a liquid jet, which leads to high protein consumption. A slow-moving stream of agarose has been developed as a new crystal delivery medium for SFX. It has low background scattering, is compatible with both soluble and membrane proteins, and can deliver the protein crystals at a wide range of temperatures down to 4°C. Using this crystal-laden agarose stream, the structure of a multi-subunit complex, phycocyanin, was solved to 2.5 Å resolution using 300 µg of microcrystals embedded into the agarose medium post-crystallization. The agarose delivery method reduces protein consumption by at least 100-fold and has the potential to be used for a diverse population of proteins, including membrane protein complexes.
ContributorsConrad, Chelsie (Author) / Basu, Shibom (Author) / James, Daniel (Author) / Wang, Dingjie (Author) / Schaffer, Alexander (Author) / Roy Chowdhury, Shatabdi (Author) / Zatsepin, Nadia (Author) / Aquila, Andrew (Author) / Coe, Jesse (Author) / Gati, Cornelius (Author) / Hunter, Mark S. (Author) / Koglin, Jason E. (Author) / Kupitz, Christopher (Author) / Nelson, Garrett (Author) / Subramanian, Ganesh (Author) / White, Thomas A. (Author) / Zhao, Yun (Author) / Zook, James (Author) / Boutet, Sebastien (Author) / Cherezov, Vadim (Author) / Spence, John (Author) / Fromme, Raimund (Author) / Weierstall, Uwe (Author) / Fromme, Petra (Author) / Department of Chemistry and Biochemistry (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor) / School of Molecular Sciences (Contributor)
Created2015-06-30
130306-Thumbnail Image.png
Description
Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) enables high-resolution protein structure determination using micrometre-sized crystals at room temperature with minimal effects from radiation damage. SFX requires a steady supply of microcrystals intersecting the XFEL beam at random orientations. An LCP–SFX method has recently been introduced in which microcrystals

Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) enables high-resolution protein structure determination using micrometre-sized crystals at room temperature with minimal effects from radiation damage. SFX requires a steady supply of microcrystals intersecting the XFEL beam at random orientations. An LCP–SFX method has recently been introduced in which microcrystals of membrane proteins are grown and delivered for SFX data collection inside a gel-like membrane-mimetic matrix, known as lipidic cubic phase (LCP), using a special LCP microextrusion injector. Here, it is demonstrated that LCP can also be used as a suitable carrier medium for microcrystals of soluble proteins, enabling a dramatic reduction in the amount of crystallized protein required for data collection compared with crystals delivered by liquid injectors. High-quality LCP–SFX data sets were collected for two soluble proteins, lysozyme and phycocyanin, using less than 0.1 mg of each protein.
ContributorsFromme, Raimund (Author) / Ishchenko, Andrii (Author) / Metz, Markus (Author) / Roy Chowdhury, Shatabdi (Author) / Basu, Shibom (Author) / Boutet, Sebastien (Author) / Fromme, Petra (Author) / White, Thomas A. (Author) / Barty, Anton (Author) / Spence, John (Author) / Weierstall, Uwe (Author) / Liu, Wei (Author) / Cherezov, Vadim (Author) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor)
Created2015-08-04
130302-Thumbnail Image.png
Description
Mix-and-inject serial crystallography (MISC) is a technique designed to image enzyme catalyzed reactions in which small protein crystals are mixed with a substrate just prior to being probed by an X-ray pulse. This approach offers several advantages over flow cell studies. It provides (i) room temperature structures at near atomic

Mix-and-inject serial crystallography (MISC) is a technique designed to image enzyme catalyzed reactions in which small protein crystals are mixed with a substrate just prior to being probed by an X-ray pulse. This approach offers several advantages over flow cell studies. It provides (i) room temperature structures at near atomic resolution, (ii) time resolution ranging from microseconds to seconds, and (iii) convenient reaction initiation. It outruns radiation damage by using femtosecond X-ray pulses allowing damage and chemistry to be separated. Here, we demonstrate that MISC is feasible at an X-ray free electron laser by studying the reaction of M. tuberculosis ß-lactamase microcrystals with ceftriaxone antibiotic solution. Electron density maps of the apo-ß-lactamase and of the ceftriaxone bound form were obtained at 2.8 Å and 2.4 Å resolution, respectively. These results pave the way to study cyclic and non-cyclic reactions and represent a new field of time-resolved structural dynamics for numerous substrate-triggered biological reactions.
ContributorsKupitz, Christopher (Author) / Olmos, Jose L. (Author) / Holl, Mark (Author) / Tremblay, Lee (Author) / Pande, Kanupriya (Author) / Pandey, Suraj (Author) / Oberthur, Dominik (Author) / Hunter, Mark (Author) / Liang, Mengning (Author) / Aquila, Andrew (Author) / Tenboer, Jason (Author) / Calvey, George (Author) / Katz, Andrea (Author) / Chen, Yujie (Author) / Wiedorn, Max O. (Author) / Knoska, Juraj (Author) / Meents, Alke (Author) / Majriani, Valerio (Author) / Norwood, Tyler (Author) / Poudyal, Ishwor (Author) / Grant, Thomas (Author) / Miller, Mitchell D. (Author) / Xu, Weijun (Author) / Tolstikova, Aleksandra (Author) / Morgan, Andrew (Author) / Metz, Markus (Author) / Martin Garcia, Jose Manuel (Author) / Zook, James (Author) / Roy Chowdhury, Shatabdi (Author) / Coe, Jesse (Author) / Nagaratnam, Nirupa (Author) / Meza-Aguilar, Domingo (Author) / Fromme, Raimund (Author) / Basu, Shibom (Author) / Frank, Matthias (Author) / White, Thomas (Author) / Barty, Anton (Author) / Bajt, Sasa (Author) / Yefanov, Oleksandr (Author) / Chapman, Henry N. (Author) / Zatsepin, Nadia (Author) / Nelson, Garrett (Author) / Weierstall, Uwe (Author) / Spence, John (Author) / Schwander, Peter (Author) / Pollack, Lois (Author) / Fromme, Petra (Author) / Ourmazd, Abbas (Author) / Phillips, George N. (Author) / Schmidt, Marius (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor) / School of Molecular Sciences (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor)
Created2016-12-15
130431-Thumbnail Image.png
Description
We studied the microbial community structure of pilot two-stage membrane biofilm reactors (MBfRs) designed to reduce nitrate (NO[subscript 3]–) and perchlorate (ClO[subscript 4]–) in contaminated groundwater. The groundwater also contained oxygen (O[subscript 2]) and sulfate (SO[2 over 4]–), which became important electron sinks that affected the NO[subscript 3]– and ClO[subscript

We studied the microbial community structure of pilot two-stage membrane biofilm reactors (MBfRs) designed to reduce nitrate (NO[subscript 3]–) and perchlorate (ClO[subscript 4]–) in contaminated groundwater. The groundwater also contained oxygen (O[subscript 2]) and sulfate (SO[2 over 4]–), which became important electron sinks that affected the NO[subscript 3]– and ClO[subscript 4]– removal rates. Using pyrosequencing, we elucidated how important phylotypes of each “primary” microbial group, i.e., denitrifying bacteria (DB), perchlorate-reducing bacteria (PRB), and sulfate-reducing bacteria (SRB), responded to changes in electron-acceptor loading. UniFrac, principal coordinate analysis (PCoA), and diversity analyses documented that the microbial community of biofilms sampled when the MBfRs had a high acceptor loading were phylogenetically distant from and less diverse than the microbial community of biofilm samples with lower acceptor loadings. Diminished acceptor loading led to SO[2 over 4]– reduction in the lag MBfR, which allowed Desulfovibrionales (an SRB) and Thiothrichales (sulfur-oxidizers) to thrive through S cycling. As a result of this cooperative relationship, they competed effectively with DB/PRB phylotypes such as Xanthomonadales and Rhodobacterales. Thus, pyrosequencing illustrated that while DB, PRB, and SRB responded predictably to changes in acceptor loading, a decrease in total acceptor loading led to important shifts within the “primary” groups, the onset of other members (e.g., Thiothrichales), and overall greater diversity.
Created2014-07-01