The title “Regents’ Professor” is the highest faculty honor awarded at Arizona State University. It is conferred on ASU faculty who have made pioneering contributions in their areas of expertise, who have achieved a sustained level of distinction, and who enjoy national and international recognition for these accomplishments. This collection contains primarily open access works by ASU Regents' Professors.

Displaying 1 - 10 of 43
Filtering by

Clear all filters

130364-Thumbnail Image.png
Description
Background
Drosophila melanogaster has been established as a model organism for investigating the developmental gene interactions. The spatio-temporal gene expression patterns of Drosophila melanogaster can be visualized by in situ hybridization and documented as digital images. Automated and efficient tools for analyzing these expression images will provide biological insights into the

Background
Drosophila melanogaster has been established as a model organism for investigating the developmental gene interactions. The spatio-temporal gene expression patterns of Drosophila melanogaster can be visualized by in situ hybridization and documented as digital images. Automated and efficient tools for analyzing these expression images will provide biological insights into the gene functions, interactions, and networks. To facilitate pattern recognition and comparison, many web-based resources have been created to conduct comparative analysis based on the body part keywords and the associated images. With the fast accumulation of images from high-throughput techniques, manual inspection of images will impose a serious impediment on the pace of biological discovery. It is thus imperative to design an automated system for efficient image annotation and comparison.
Results
We present a computational framework to perform anatomical keywords annotation for Drosophila gene expression images. The spatial sparse coding approach is used to represent local patches of images in comparison with the well-known bag-of-words (BoW) method. Three pooling functions including max pooling, average pooling and Sqrt (square root of mean squared statistics) pooling are employed to transform the sparse codes to image features. Based on the constructed features, we develop both an image-level scheme and a group-level scheme to tackle the key challenges in annotating Drosophila gene expression pattern images automatically. To deal with the imbalanced data distribution inherent in image annotation tasks, the undersampling method is applied together with majority vote. Results on Drosophila embryonic expression pattern images verify the efficacy of our approach.
Conclusion
In our experiment, the three pooling functions perform comparably well in feature dimension reduction. The undersampling with majority vote is shown to be effective in tackling the problem of imbalanced data. Moreover, combining sparse coding and image-level scheme leads to consistent performance improvement in keywords annotation.
ContributorsSun, Qian (Author) / Muckatira, Sherin (Author) / Yuan, Lei (Author) / Ji, Shuiwang (Author) / Newfeld, Stuart (Author) / Kumar, Sudhir (Author) / Ye, Jieping (Author) / Biodesign Institute (Contributor) / Center for Evolution and Medicine (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Ira A. Fulton Schools of Engineering (Contributor)
Created2013-12-03
130370-Thumbnail Image.png
Description

Background:
Drosophila gene expression pattern images document the spatiotemporal dynamics of gene expression during embryogenesis. A comparative analysis of these images could provide a fundamentally important way for studying the regulatory networks governing development. To facilitate pattern comparison and searching, groups of images in the Berkeley Drosophila Genome Project (BDGP) high-throughput

Background:
Drosophila gene expression pattern images document the spatiotemporal dynamics of gene expression during embryogenesis. A comparative analysis of these images could provide a fundamentally important way for studying the regulatory networks governing development. To facilitate pattern comparison and searching, groups of images in the Berkeley Drosophila Genome Project (BDGP) high-throughput study were annotated with a variable number of anatomical terms manually using a controlled vocabulary. Considering that the number of available images is rapidly increasing, it is imperative to design computational methods to automate this task.

Results:
We present a computational method to annotate gene expression pattern images automatically. The proposed method uses the bag-of-words scheme to utilize the existing information on pattern annotation and annotates images using a model that exploits correlations among terms. The proposed method can annotate images individually or in groups (e.g., according to the developmental stage). In addition, the proposed method can integrate information from different two-dimensional views of embryos. Results on embryonic patterns from BDGP data demonstrate that our method significantly outperforms other methods.

Conclusion:
The proposed bag-of-words scheme is effective in representing a set of annotations assigned to a group of images, and the model employed to annotate images successfully captures the correlations among different controlled vocabulary terms. The integration of existing annotation information from multiple embryonic views improves annotation performance.

ContributorsJi, Shuiwang (Author) / Li, Ying-Xin (Author) / Zhou, Zhi-Hua (Author) / Kumar, Sudhir (Author) / Ye, Jieping (Author) / Biodesign Institute (Contributor) / Ira A. Fulton Schools of Engineering (Contributor) / School of Electrical, Computer and Energy Engineering (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2009-04-21
130385-Thumbnail Image.png
Description
The impact of finite dielectric-covered ground-plane edge diffractions on the amplitude patterns of circular apertures is investigated. The model is based on the Geometrical Optics (GO) and the Uniform Theory of Diffraction (UTD) for an impedance wedge. The circular aperture antenna is mounted on square and circular finite ground planes

The impact of finite dielectric-covered ground-plane edge diffractions on the amplitude patterns of circular apertures is investigated. The model is based on the Geometrical Optics (GO) and the Uniform Theory of Diffraction (UTD) for an impedance wedge. The circular aperture antenna is mounted on square and circular finite ground planes that are coated with a thin lossy dielectric layer. The predictions based on the GO/UTD model are validated by comparisons to experimental results and simulated data.
Created2014-11-30
130386-Thumbnail Image.png
Description
This paper presents a multiscale modeling approach to simulating the self-sensing behavior of a load sensitive smart polymer material. A statistical spring-bead based network model is developed to bridge the molecular dynamics simulations at the nanoscale and the finite element model at the macroscale. Parametric studies are conducted on the

This paper presents a multiscale modeling approach to simulating the self-sensing behavior of a load sensitive smart polymer material. A statistical spring-bead based network model is developed to bridge the molecular dynamics simulations at the nanoscale and the finite element model at the macroscale. Parametric studies are conducted on the developed network model to investigate the effects of the thermoset crosslinking degree on the mechanical response of the self-sensing material. A comparison between experimental and simulation results shows that the multiscale framework is able to capture the global mechanical response with adequate accuracy and the network model is also capable of simulating the self-sensing phenomenon of the smart polymer. Finally, the molecular dynamics simulation and network model based simulation are implemented to evaluate damage initiation in the self-sensing material under monotonic loading.
ContributorsZhang, Jinjun (Author) / Koo, Bonsung (Author) / Liu, Yingtao (Author) / Zou, Jin (Author) / Chattopadhyay, Aditi (Author) / Dai, Lenore (Author) / Ira A. Fulton Schools of Engineering (Contributor) / School for the Engineering of Matter, Transport and Energy (Contributor)
Created2015-08-01
130399-Thumbnail Image.png
Description
Sustainable production of microalgae for biofuel requires efficient phosphorus (P) utilization, which is a limited resource and vital for global food security. This research tracks the fate of P through biofuel production and investigates P recovery from the biomass using the cyanobacterium Synechocystis sp. PCC 6803. Our results show that

Sustainable production of microalgae for biofuel requires efficient phosphorus (P) utilization, which is a limited resource and vital for global food security. This research tracks the fate of P through biofuel production and investigates P recovery from the biomass using the cyanobacterium Synechocystis sp. PCC 6803. Our results show that Synechocystis contained 1.4% P dry weight. After crude lipids were extracted (e.g., for biofuel processing), 92% of the intracellular P remained in the residual biomass, indicating phospholipids comprised only a small percentage of cellular P. We estimate a majority of the P is primarily associated with nucleic acids. Advanced oxidation using hydrogen peroxide and microwave heating released 92% of the cellular P into orthophosphate. We then recovered the orthophosphate from the digestion matrix using two different types of anion exchange resins. One resin impregnated with iron nanoparticles adsorbed 98% of the influent P through 20 bed volumes, but only released 23% during regeneration. A strong-base anion exchange resin adsorbed 87% of the influent P through 20 bed volumes and released 50% of it upon regeneration. This recovered P subsequently supported growth of Synechocystis. This proof-of-concept recovery process reduced P demand of biofuel microalgae by 54%.
Created2015-03-01
130401-Thumbnail Image.png
Description
Wall-bounded turbulence manifests itself in a broad range of applications, not least of which in hydraulic systems. Here we briefly review the significant advances over the past few decades in the fundamental study of wall turbulence over smooth and rough surfaces, with an emphasis on coherent structures and their role

Wall-bounded turbulence manifests itself in a broad range of applications, not least of which in hydraulic systems. Here we briefly review the significant advances over the past few decades in the fundamental study of wall turbulence over smooth and rough surfaces, with an emphasis on coherent structures and their role at high Reynolds numbers. We attempt to relate these findings to parallel efforts in the hydraulic engineering community and discuss the implications of coherent structures in important hydraulic phenomena.
Created2012-09-10
130402-Thumbnail Image.png
Description
Vortex organization in the outer layer of a turbulent boundary layer overlying sparse, hemispherical roughness elements is explored with two-component particle-image velocimetry (PIV) in multiple streamwise-wall-normal measurement planes downstream and between elements. The presence of sparse roughness elements causes a shortening of the streamwise length scale in the near-wall region.

Vortex organization in the outer layer of a turbulent boundary layer overlying sparse, hemispherical roughness elements is explored with two-component particle-image velocimetry (PIV) in multiple streamwise-wall-normal measurement planes downstream and between elements. The presence of sparse roughness elements causes a shortening of the streamwise length scale in the near-wall region. These measurements confirm that vortex packets exist in the outer layer of flow over rough walls, but that their organization is altered, and this is interpreted as the underlying cause of the length-scale reduction. In particular, the elements shed vortices which appear to align in the near-wall region, but are distinct from the packets. Further, it is observed that ejection events triggered in the element wakes are more intense compared to the ejection events in smooth wall. We speculate that this may initiate a self-sustaining mechanism leading to the formation of hairpin packets as a much more effective instability compared to those typical of smooth-wall turbulence.
Created2012-09-09
130403-Thumbnail Image.png
Description
The dynamic importance of spanwise vorticity and vortex filaments has been assessed in steady, uniform open-channel flows by means of particle image velocimetry (PIV). By expressing the net force due to Reynolds’ turbulent shear stress, ∂(−[bar over uv]) ∂y, in terms of two velocity-vorticity correlations, [bar over vω[subscript z]] and

The dynamic importance of spanwise vorticity and vortex filaments has been assessed in steady, uniform open-channel flows by means of particle image velocimetry (PIV). By expressing the net force due to Reynolds’ turbulent shear stress, ∂(−[bar over uv]) ∂y, in terms of two velocity-vorticity correlations, [bar over vω[subscript z]] and [bar over wω[subscript y]], the results show that both spanwise vorticity [bar over ω[subscript z]] and the portion of it that is due to spanwise filaments make important contributions to the net force and hence the shape of the mean flow profile. Using the swirling strength to identify spanwise vortex filaments, it is found that they account for about 45% of [bar over vω[subscript z]], the remainder coming from non-filamentary spanwise vorticity, i.e. shear. The mechanism underlying this contribution is the movement of vortex filaments away from the wall. The contribution of spanwise vortex filaments to the Reynolds stress is small because they occupy a small fraction of the flow. The contribution of the induced motion of the spanwise vortex filaments is significant.
Created2013-11-30
130319-Thumbnail Image.png
Description

Serial femtosecond crystallography requires reliable and efficient delivery of fresh crystals across the beam of an X-ray free-electron laser over the course of an experiment. We introduce a double-flow focusing nozzle to meet this challenge, with significantly reduced sample consumption, while improving jet stability over previous generations of nozzles. We

Serial femtosecond crystallography requires reliable and efficient delivery of fresh crystals across the beam of an X-ray free-electron laser over the course of an experiment. We introduce a double-flow focusing nozzle to meet this challenge, with significantly reduced sample consumption, while improving jet stability over previous generations of nozzles. We demonstrate its use to determine the first room-temperature structure of RNA polymerase II at high resolution, revealing new structural details. Moreover, the double flow-focusing nozzles were successfully tested with three other protein samples and the first room temperature structure of an extradiol ring-cleaving dioxygenase was solved by utilizing the improved operation and characteristics of these devices.

ContributorsOberthuer, Dominik (Author) / Knoska, Juraj (Author) / Wiedorn, Max O. (Author) / Beyerlein, Kenneth R. (Author) / Bushnell, David A. (Author) / Kovaleva, Elena G. (Author) / Heymann, Michael (Author) / Gumprecht, Lars (Author) / Kirian, Richard (Author) / Barty, Anton (Author) / Mariani, Valerio (Author) / Tolstikova, Aleksandra (Author) / Adriano, Luigi (Author) / Awel, Salah (Author) / Barthelmess, Miriam (Author) / Dorner, Katerina (Author) / Xavier, P. Lourdu (Author) / Yefanov, Oleksandr (Author) / James, Daniel (Author) / Nelson, Garrett (Author) / Wang, Dingjie (Author) / Calvey, George (Author) / Chen, Yujie (Author) / Schmidt, Andrea (Author) / Szczepek, Michael (Author) / Frielingsdorf, Stefan (Author) / Lenz, Oliver (Author) / Snell, Edward (Author) / Robinson, Philip J. (Author) / Sarler, Bozidar (Author) / Belsak, Grega (Author) / Macek, Marjan (Author) / Wilde, Fabian (Author) / Aquila, Andrew (Author) / Boutet, Sebastien (Author) / Liang, Mengning (Author) / Hunter, Mark S. (Author) / Scheerer, Patrick (Author) / Lipscomb, John D. (Author) / Weierstall, Uwe (Author) / Kornberg, Roger D. (Author) / Spence, John (Author) / Pollack, Lois (Author) / Chapman, Henry N. (Author) / Bajt, Sasa (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor)
Created2017-03-16
130320-Thumbnail Image.png
Description

X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a

X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a differently shaped palladium shell. Scattered intensities were observed up to about 7 nm resolution. Analysis of the scattering patterns revealed the size distribution of the samples, which is consistent with that obtained from direct real-space imaging by electron microscopy. Scattering patterns resulting from single particles were selected and compiled into a dataset which can be valuable for algorithm developments in single particle scattering research.

ContributorsLi, Xuanxuan (Author) / Chiu, Chun-Ya (Author) / Wang, Hsiang-Ju (Author) / Kassemeyer, Stephan (Author) / Botha, Sabine (Author) / Shoeman, Robert L. (Author) / Lawrence, Robert (Author) / Kupitz, Christopher (Author) / Kirian, Richard (Author) / James, Daniel (Author) / Wang, Dingjie (Author) / Nelson, Garrett (Author) / Messerschmidt, Marc (Author) / Boutet, Sebastien (Author) / Williams, Garth J. (Author) / Hartman, Elisabeth (Author) / Jafarpour, Aliakbar (Author) / Foucar, Lutz M. (Author) / Barty, Anton (Author) / Chapman, Henry (Author) / Liang, Mengning (Author) / Menzel, Andreas (Author) / Wang, Fenglin (Author) / Basu, Shibom (Author) / Fromme, Raimund (Author) / Doak, R. Bruce (Author) / Fromme, Petra (Author) / Weierstall, Uwe (Author) / Huang, Michael H. (Author) / Spence, John (Author) / Schlichting, Ilme (Author) / Hogue, Brenda (Author) / Liu, Haiguang (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / Department of Physics (Contributor) / School of Life Sciences (Contributor)
Created2017-04-11