The title “Regents’ Professor” is the highest faculty honor awarded at Arizona State University. It is conferred on ASU faculty who have made pioneering contributions in their areas of expertise, who have achieved a sustained level of distinction, and who enjoy national and international recognition for these accomplishments. This collection contains primarily open access works by ASU Regents' Professors.

Displaying 1 - 5 of 5
Filtering by

Clear all filters

130345-Thumbnail Image.png
Description
Nitrogen (N) and phosphorus (P) are important limiting nutrients for plant production and consumer performance in a variety of ecosystems. As a result, the N:P stoichiometry of herbivores has received increased attention in ecology. However, the mechanisms by which herbivores maintain N:P stoichiometric homeostasis are poorly understood. Here, using a

Nitrogen (N) and phosphorus (P) are important limiting nutrients for plant production and consumer performance in a variety of ecosystems. As a result, the N:P stoichiometry of herbivores has received increased attention in ecology. However, the mechanisms by which herbivores maintain N:P stoichiometric homeostasis are poorly understood. Here, using a field manipulation experiment we show that the grasshopper Oedaleus asiaticus maintains strong N:P stoichiometric homeostasis regardless of whether grasshoppers were reared at low or high density. Grasshoppers maintained homeostasis by increasing P excretion when eating plants with higher P contents. However, while grasshoppers also maintained constant body N contents, we found no changes in N excretion in response to changing plant N content over the range measured. These results suggest that O. asiaticus maintains P homeostasis primarily by changing P absorption and excretion rates, but that other mechanisms may be more important for regulating N homeostasis. Our findings improve our understanding of consumer-driven P recycling and may help in understanding the factors affecting plant-herbivore interactions and ecosystem processes in grasslands.
ContributorsZhang, Zijia (Author) / Elser, James (Author) / Cease, Arianne (Author) / Zhang, Ximei (Author) / Yu, Qiang (Author) / Han, Xingguo (Author) / Zhang, Guangming (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Julie Ann Wrigley Global Institute of Sustainability (Contributor) / School of Sustainability (Contributor)
Created2014-08-04
130336-Thumbnail Image.png
Description
Multiple co-occurring environmental changes are affecting soil nitrogen cycling processes, which are mainly mediated by microbes. While it is likely that various nitrogen-cycling functional groups will respond differently to such environmental changes, very little is known about their relative responsiveness. Here we conducted four long-term experiments in a steppe ecosystem

Multiple co-occurring environmental changes are affecting soil nitrogen cycling processes, which are mainly mediated by microbes. While it is likely that various nitrogen-cycling functional groups will respond differently to such environmental changes, very little is known about their relative responsiveness. Here we conducted four long-term experiments in a steppe ecosystem by removing plant functional groups, mowing, adding nitrogen, adding phosphorus, watering, warming, and manipulating some of their combinations. We quantified the abundance of seven nitrogen-cycling genes, including those for fixation (nifH), mineralization (chiA), nitrification (amoA of ammonia-oxidizing bacteria (AOB) or archaea (AOA)), and denitrification (nirS, nirK and nosZ). First, for each gene, we compared its sensitivities to different environmental changes and found that the abundances of various genes were sensitive to distinct and different factors. Overall, the abundances of nearly all genes were sensitive to nitrogen enrichment. In addition, the abundances of the chiA and nosZ genes were sensitive to plant functional group removal, the AOB-amoA gene abundance to phosphorus enrichment when nitrogen was added simultaneously, and the nirS and nirK gene abundances responded to watering. Second, for each single- or multi-factorial environmental change, we compared the sensitivities of the abundances of different genes and found that different environmental changes primarily affected different gene abundances. Overall, AOB-amoA gene abundance was most responsive, followed by the two denitrifying genes nosZ and nirS, while the other genes were less sensitive. These results provide, for the first time, systematic insights into how the abundance of each type of nitrogen-cycling gene and the equilibrium state of all these nitrogen-cycling gene abundances would shift under each single- or multi-factorial global change.
ContributorsZhang, Ximei (Author) / Liu, Wei (Author) / Schloter, Michael (Author) / Zhang, Guangming (Author) / Chen, Quansheng (Author) / Jianhui, Huang (Author) / Li, Linghao (Author) / Elser, James (Author) / Han, Xingguo (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2013-10-04
130333-Thumbnail Image.png
Description
The growth rate hypothesis (GRH) proposes that higher growth rate (the rate of change in biomass per unit biomass, μ) is associated with higher P concentration and lower C∶P and N∶P ratios. However, the applicability of the GRH to vascular plants is not well-studied and few studies have been done

The growth rate hypothesis (GRH) proposes that higher growth rate (the rate of change in biomass per unit biomass, μ) is associated with higher P concentration and lower C∶P and N∶P ratios. However, the applicability of the GRH to vascular plants is not well-studied and few studies have been done on belowground biomass. Here we showed that, for aboveground, belowground and total biomass of three study species, μ was positively correlated with N∶C under N limitation and positively correlated with P∶C under P limitation. However, the N∶P ratio was a unimodal function of μ, increasing for small values of μ, reaching a maximum, and then decreasing. The range of variations in μ was positively correlated with variation in C∶N∶P stoichiometry. Furthermore, μ and C∶N∶P ranges for aboveground biomass were negatively correlated with those for belowground. Our results confirm the well-known association of growth rate with tissue concentration of the limiting nutrient and provide empirical support for recent theoretical formulations.
ContributorsYu, Qiang (Author) / Wu, Honghui (Author) / He, Nianpeng (Author) / Lu, Xiaotao (Author) / Wang, Zhiping (Author) / Elser, James (Author) / Wu, Jianguo (Author) / Han, Xingguo (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Julie Ann Wrigley Global Institute of Sustainability (Contributor) / School of Sustainability (Contributor)
Created2012-03-13
130388-Thumbnail Image.png
Description
Although conflict is a normative part of parent–adolescent relationships, conflicts that are long or highly negative are likely to be detrimental to these relationships and to youths’ development. In the present article, sequential analyses of data from 138 parent–adolescent dyads (adolescents’ mean age was 13.44, SD = 1.16; 52 %

Although conflict is a normative part of parent–adolescent relationships, conflicts that are long or highly negative are likely to be detrimental to these relationships and to youths’ development. In the present article, sequential analyses of data from 138 parent–adolescent dyads (adolescents’ mean age was 13.44, SD = 1.16; 52 % girls, 79 % non-Hispanic White) were used to define conflicts as reciprocal exchanges of negative emotion observed while parents and adolescents were discussing “hot,” conflictual issues. Dynamic components of these exchanges, including who started the conflicts, who ended them, and how long they lasted, were identified. Mediation analyses revealed that a high proportion of conflicts ended by adolescents was associated with longer conflicts, which in turn predicted perceptions of the “hot” issue as unresolved and adolescent behavior problems. The findings illustrate advantages of using sequential analysis to identify patterns of interactions and, with some certainty, obtain an estimate of the contingent relationship between a pattern of behavior and child and parental outcomes. These interaction patterns are discussed in terms of the roles that parents and children play when in conflict with each other, and the processes through which these roles affect conflict resolution and adolescents’ behavior problems.
ContributorsMoed, Anat (Author) / Gershoff, Elizabeth T. (Author) / Eisenberg, Nancy (Author) / Hofer, Claire (Author) / Losoya, Sandra (Author) / Spinrad, Tracy (Author) / Liew, Jeffrey (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Psychology (Contributor) / Sanford School of Social and Family Dynamics (Contributor)
Created2015-08-01
130411-Thumbnail Image.png
Description
The purpose of this study was to examine whether dispositional sadness predicted children's prosocial behavior and if sympathy mediated this relation. Constructs were measured when children (n = 256 at time 1) were 18, 30, and 42 months old. Mothers and non-parental caregivers rated children's sadness; mothers, caregivers, and fathers rated

The purpose of this study was to examine whether dispositional sadness predicted children's prosocial behavior and if sympathy mediated this relation. Constructs were measured when children (n = 256 at time 1) were 18, 30, and 42 months old. Mothers and non-parental caregivers rated children's sadness; mothers, caregivers, and fathers rated children's prosocial behavior; sympathy (concern and hypothesis testing) and prosocial behavior (indirect and direct, as well as verbal at older ages) were assessed with a task in which the experimenter feigned injury. In a panel path analysis, 30-month dispositional sadness predicted marginally higher 42-month sympathy; in addition, 30-month sympathy predicted 42-month sadness. Moreover, when controlling for prior levels of prosocial behavior, 30-month sympathy significantly predicted reported and observed prosocial behavior at 42 months. Sympathy did not mediate the relation between sadness and prosocial behavior (either reported or observed).
Created2015-01-01