The title “Regents’ Professor” is the highest faculty honor awarded at Arizona State University. It is conferred on ASU faculty who have made pioneering contributions in their areas of expertise, who have achieved a sustained level of distinction, and who enjoy national and international recognition for these accomplishments. This collection contains primarily open access works by ASU Regents' Professors.

Displaying 1 - 8 of 8
Filtering by

Clear all filters

130288-Thumbnail Image.png
Description

This article looks closely at two types of errors children have been shown to make with universal quantification—Exhaustive Pairing (EP) errors and Underexhaustive errors—and asks whether they reflect the same underlying phenomenon. In a large-scale, longitudinal study, 140 children were tested 4 times from ages 4 to 7 on sentences

This article looks closely at two types of errors children have been shown to make with universal quantification—Exhaustive Pairing (EP) errors and Underexhaustive errors—and asks whether they reflect the same underlying phenomenon. In a large-scale, longitudinal study, 140 children were tested 4 times from ages 4 to 7 on sentences involving the universal quantifier every. We find an interesting inverse relationship between EP errors and Underexhaustive errors over development: the point at which children stop making Underexhaustive errors is also when they begin making EP errors. Underexhaustive errors, common at early stages in our study, may be indicative of a non-adult, non-exhaustive semantics for every. EP errors, which emerge later, and remain frequent even at age 7, are progressive in nature and were also found with adults in a control study. Following recent developmental work (Drozd and van Loosbroek 2006; Smits 2010), we suggest that these errors do not signal lack of knowledge, but may stem from independent difficulties appropriately restricting the quantifier domain in the presence of a salient, but irrelevant, extra object.

ContributorsAravind, Athulya (Author) / de Villiers, Jill (Author) / de Villiers, Peter (Author) / Lonigan, Christopher J. (Author) / Phillips, Beth M. (Author) / Clancy, Jeanine (Author) / Landry, Susan H. (Author) / Swank, Paul R. (Author) / Assel, Michael (Author) / Taylor, Heather B. (Author) / Eisenberg, Nancy (Author) / Spinrad, Tracy (Author) / Valiente, Carlos (Author) / College of Liberal Arts and Sciences (Contributor) / Sanford School of Social and Family Dynamics (Contributor)
Created2017-05-09
130260-Thumbnail Image.png
Description
Electricity plays a special role in our lives and life. The dynamics of electrons allow light to flow through a vacuum. The equations of electron dynamics are nearly exact and apply from nuclear particles to stars. These Maxwell equations include a special term, the displacement current (of a vacuum). The

Electricity plays a special role in our lives and life. The dynamics of electrons allow light to flow through a vacuum. The equations of electron dynamics are nearly exact and apply from nuclear particles to stars. These Maxwell equations include a special term, the displacement current (of a vacuum). The displacement current allows electrical signals to propagate through space. Displacement current guarantees that current is exactly conserved from inside atoms to between stars, as long as current is defined as the entire source of the curl of the magnetic field, as Maxwell did.We show that the Bohm formulation of quantum mechanics allows the easy definition of the total current, and its conservation, without the dificulties implicit in the orthodox quantum theory. The orthodox theory neglects the reality of magnitudes, like the currents, during times that they are not being explicitly measured.We show how conservation of current can be derived without mention of the polarization or dielectric properties of matter. We point out that displacement current is handled correctly in electrical engineering by ‘stray capacitances’, although it is rarely discussed explicitly. Matter does not behave as physicists of the 1800’s thought it did. They could only measure on a time scale of seconds and tried to explain dielectric properties and polarization with a single dielectric constant, a real positive number independent of everything. Matter and thus charge moves in enormously complicated ways that cannot be described by a single dielectric constant,when studied on time scales important today for electronic technology and molecular biology. When classical theories could not explain complex charge movements, constants in equations were allowed to vary in solutions of those equations, in a way not justified by mathematics, with predictable consequences. Life occurs in ionic solutions where charge is moved by forces not mentioned or described in the Maxwell equations, like convection and diffusion. These movements and forces produce crucial currents that cannot be described as classical conduction or classical polarization. Derivations of conservation of current involve oversimplified treatments of dielectrics and polarization in nearly every textbook. Because real dielectrics do not behave in that simple way-not even approximately-classical derivations of conservation of current are often distrusted or even ignored. We show that current is conserved inside atoms. We show that current is conserved exactly in any material no matter how complex are the properties of dielectric, polarization, or conduction currents. Electricity has a special role because conservation of current is a universal law.Most models of chemical reactions do not conserve current and need to be changed to do so. On the macroscopic scale of life, conservation of current necessarily links far spread boundaries to each other, correlating inputs and outputs, and thereby creating devices.We suspect that correlations created by displacement current link all scales and allow atoms to control the machines and organisms of life. Conservation of current has a special role in our lives and life, as well as in physics. We believe models, simulations, and computations should conserve current on all scales, as accurately as possible, because physics conserves current that way. We believe models will be much more successful if they conserve current at every level of resolution, the way physics does.We surely need successful models as we try to control macroscopic functions by atomic interventions, in technology, life, and medicine. Maxwell’s displacement current lets us see stars. We hope it will help us see how atoms control life.
Created2017-10-28
130321-Thumbnail Image.png
Description
We have fabricated a high mobility device, composed of a monolayer graphene flake sandwiched between two sheets of hexagonal boron nitride. Conductance fluctuations as functions of a back gate voltage and magnetic field were obtained to check for ergodicity. Non-linear dynamics concepts were used to study the nature of these

We have fabricated a high mobility device, composed of a monolayer graphene flake sandwiched between two sheets of hexagonal boron nitride. Conductance fluctuations as functions of a back gate voltage and magnetic field were obtained to check for ergodicity. Non-linear dynamics concepts were used to study the nature of these fluctuations. The distribution of eigenvalues was estimated from the conductance fluctuations with Gaussian kernels and it indicates that the carrier motion is chaotic at low temperatures. We argue that a two-phase dynamical fluid model best describes the transport in this system and can be used to explain the violation of the so-called ergodic hypothesis found in graphene.
Contributorsda Cunha, C. R. (Author) / Mineharu, M. (Author) / Matsunaga, M. (Author) / Matsumoto, N. (Author) / Chuang, C. (Author) / Ochiai, Y. (Author) / Kim, G.-H. (Author) / Watanabe, K. (Author) / Taniguchi, T. (Author) / Ferry, David (Author) / Aoki, N. (Author) / Ira A. Fulton Schools of Engineering (Contributor) / School of Electrical, Computer and Energy Engineering (Contributor)
Created2016-09-09
130390-Thumbnail Image.png
Description
Since its introduction, the Rosenberg General Self-Esteem Scale (RGSE, Rosenberg, 1965) has been 1 of the most widely used measures of global self-esteem. We conducted 4 studies to investigate (a) the goodness-of-fit of a bifactor model positing a general self-esteem (GSE) factor and 2 specific factors grouping positive (MFP) and

Since its introduction, the Rosenberg General Self-Esteem Scale (RGSE, Rosenberg, 1965) has been 1 of the most widely used measures of global self-esteem. We conducted 4 studies to investigate (a) the goodness-of-fit of a bifactor model positing a general self-esteem (GSE) factor and 2 specific factors grouping positive (MFP) and negative items (MFN) and (b) different kinds of validity of the GSE, MFN, and MFP factors of the RSGE. In the first study (n = 11,028), the fit of the bifactor model was compared with those of 9 alternative models proposed in literature for the RGSE. In Study 2 (n = 357), the external validities of GSE, MFP, and MFN were evaluated using objective grade point average data and multimethod measures of prosociality, aggression, and depression. In Study 3 (n = 565), the across-rater robustness of the bifactor model was evaluated. In Study 4, measurement invariance of the RGSE was further supported across samples in 3 European countries, Serbia (n = 1,010), Poland (n = 699), and Italy (n = 707), and in the United States (n = 1,192). All in all, psychometric findings corroborate the value and the robustness of the bifactor structure and its substantive interpretation.
ContributorsAlessandri, Guido (Author) / Vecchione, Michele (Author) / Eisenberg, Nancy (Author) / Laguna, Mariola (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Psychology (Contributor)
Created2015-06-01
130389-Thumbnail Image.png
Description
We used sex, observed parenting quality at 18 months, and three variants of the catechol-O-methyltransferase gene (Val[superscript 158]Met [rs4680], intron1 [rs737865], and 3′-untranslated region [rs165599]) to predict mothers' reports of inhibitory and attentional control (assessed at 42, 54, 72, and 84 months) and internalizing symptoms (assessed at 24, 30, 42,

We used sex, observed parenting quality at 18 months, and three variants of the catechol-O-methyltransferase gene (Val[superscript 158]Met [rs4680], intron1 [rs737865], and 3′-untranslated region [rs165599]) to predict mothers' reports of inhibitory and attentional control (assessed at 42, 54, 72, and 84 months) and internalizing symptoms (assessed at 24, 30, 42, 48, and 54 months) in a sample of 146 children (79 male). Although the pattern for all three variants was very similar, Val[superscript 158]Met explained more variance in both outcomes than did intron1, the 3′-untranslated region, or a haplotype that combined all three catechol-O-methyltransferase variants. In separate models, there were significant three-way interactions among each of the variants, parenting, and sex, predicting the intercepts of inhibitory control and internalizing symptoms. Results suggested that Val[superscript 158]Met indexes plasticity, although this effect was moderated by sex. Parenting was positively associated with inhibitory control for methionine–methionine boys and for valine–valine/valine–methionine girls, and was negatively associated with internalizing symptoms for methionine–methionine boys. Using the “regions of significance” technique, genetic differences in inhibitory control were found for children exposed to high-quality parenting, whereas genetic differences in internalizing were found for children exposed to low-quality parenting. These findings provide evidence in support of testing for differential susceptibility across multiple outcomes.
Created2015-08-01
130388-Thumbnail Image.png
Description
Although conflict is a normative part of parent–adolescent relationships, conflicts that are long or highly negative are likely to be detrimental to these relationships and to youths’ development. In the present article, sequential analyses of data from 138 parent–adolescent dyads (adolescents’ mean age was 13.44, SD = 1.16; 52 %

Although conflict is a normative part of parent–adolescent relationships, conflicts that are long or highly negative are likely to be detrimental to these relationships and to youths’ development. In the present article, sequential analyses of data from 138 parent–adolescent dyads (adolescents’ mean age was 13.44, SD = 1.16; 52 % girls, 79 % non-Hispanic White) were used to define conflicts as reciprocal exchanges of negative emotion observed while parents and adolescents were discussing “hot,” conflictual issues. Dynamic components of these exchanges, including who started the conflicts, who ended them, and how long they lasted, were identified. Mediation analyses revealed that a high proportion of conflicts ended by adolescents was associated with longer conflicts, which in turn predicted perceptions of the “hot” issue as unresolved and adolescent behavior problems. The findings illustrate advantages of using sequential analysis to identify patterns of interactions and, with some certainty, obtain an estimate of the contingent relationship between a pattern of behavior and child and parental outcomes. These interaction patterns are discussed in terms of the roles that parents and children play when in conflict with each other, and the processes through which these roles affect conflict resolution and adolescents’ behavior problems.
ContributorsMoed, Anat (Author) / Gershoff, Elizabeth T. (Author) / Eisenberg, Nancy (Author) / Hofer, Claire (Author) / Losoya, Sandra (Author) / Spinrad, Tracy (Author) / Liew, Jeffrey (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Psychology (Contributor) / Sanford School of Social and Family Dynamics (Contributor)
Created2015-08-01
130433-Thumbnail Image.png
Description
The Physics and Chemistry of Surfaces and Interfaces conference has maintained a focus on the interfacial and surface properties of materials since its initiation in 1974. The conference continues to be a major force in this field, bringing together scientists from a variety of disciplines to focus upon the science

The Physics and Chemistry of Surfaces and Interfaces conference has maintained a focus on the interfacial and surface properties of materials since its initiation in 1974. The conference continues to be a major force in this field, bringing together scientists from a variety of disciplines to focus upon the science of interfaces and surfaces. Here, a historical view of the development of the conference and a discussion of some of the themes that have been focal points for many years are presented.
Created2013
130411-Thumbnail Image.png
Description
The purpose of this study was to examine whether dispositional sadness predicted children's prosocial behavior and if sympathy mediated this relation. Constructs were measured when children (n = 256 at time 1) were 18, 30, and 42 months old. Mothers and non-parental caregivers rated children's sadness; mothers, caregivers, and fathers rated

The purpose of this study was to examine whether dispositional sadness predicted children's prosocial behavior and if sympathy mediated this relation. Constructs were measured when children (n = 256 at time 1) were 18, 30, and 42 months old. Mothers and non-parental caregivers rated children's sadness; mothers, caregivers, and fathers rated children's prosocial behavior; sympathy (concern and hypothesis testing) and prosocial behavior (indirect and direct, as well as verbal at older ages) were assessed with a task in which the experimenter feigned injury. In a panel path analysis, 30-month dispositional sadness predicted marginally higher 42-month sympathy; in addition, 30-month sympathy predicted 42-month sadness. Moreover, when controlling for prior levels of prosocial behavior, 30-month sympathy significantly predicted reported and observed prosocial behavior at 42 months. Sympathy did not mediate the relation between sadness and prosocial behavior (either reported or observed).
Created2015-01-01