The title “Regents’ Professor” is the highest faculty honor awarded at Arizona State University. It is conferred on ASU faculty who have made pioneering contributions in their areas of expertise, who have achieved a sustained level of distinction, and who enjoy national and international recognition for these accomplishments. This collection contains primarily open access works by ASU Regents' Professors.

Displaying 1 - 10 of 10
Filtering by

Clear all filters

130298-Thumbnail Image.png
Description
The advent and application of the X-ray free-electron laser (XFEL) has uncovered the structures of proteins that could not previously be solved using traditional crystallography. While this new technology is powerful, optimization of the process is still needed to improve data quality and analysis efficiency. One area is sample heterogeneity,

The advent and application of the X-ray free-electron laser (XFEL) has uncovered the structures of proteins that could not previously be solved using traditional crystallography. While this new technology is powerful, optimization of the process is still needed to improve data quality and analysis efficiency. One area is sample heterogeneity, where variations in crystal size (among other factors) lead to the requirement of large data sets (and thus 10–100 mg of protein) for determining accurate structure factors. To decrease sample dispersity, we developed a high-throughput microfluidic sorter operating on the principle of dielectrophoresis, whereby polydisperse particles can be transported into various fluid streams for size fractionation. Using this microsorter, we isolated several milliliters of photosystem I nanocrystal fractions ranging from 200 to 600 nm in size as characterized by dynamic light scattering, nanoparticle tracking, and electron microscopy. Sorted nanocrystals were delivered in a liquid jet via the gas dynamic virtual nozzle into the path of the XFEL at the Linac Coherent Light Source. We obtained diffraction to ∼4 Å resolution, indicating that the small crystals were not damaged by the sorting process. We also observed the shape transforms of photosystem I nanocrystals, demonstrating that our device can optimize data collection for the shape transform-based phasing method. Using simulations, we show that narrow crystal size distributions can significantly improve merged data quality in serial crystallography. From this proof-of-concept work, we expect that the automated size-sorting of protein crystals will become an important step for sample production by reducing the amount of protein needed for a high quality final structure and the development of novel phasing methods that exploit inter-Bragg reflection intensities or use variations in beam intensity for radiation damage-induced phasing. This method will also permit an analysis of the dependence of crystal quality on crystal size.
ContributorsAbdallah, Bahige (Author) / Zatsepin, Nadia (Author) / Roy Chowdhury, Shatabdi (Author) / Coe, Jesse (Author) / Conrad, Chelsie (Author) / Dorner, Katerina (Author) / Sierra, Raymond G. (Author) / Stevenson, Hilary P. (Author) / Camacho Alanis, Fernanda (Author) / Grant, Thomas D. (Author) / Nelson, Garrett (Author) / James, Daniel (Author) / Calero, Guillermo (Author) / Wachter, Rebekka (Author) / Spence, John (Author) / Weierstall, Uwe (Author) / Fromme, Petra (Author) / Ros, Alexandra (Author) / Department of Chemistry and Biochemistry (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / Department of Physics (Contributor)
Created2015-08-19
130291-Thumbnail Image.png
Description
pH and fermentable substrates impose selective pressures on gut microbial communities and their metabolisms. We evaluated the relative contributions of pH, alkalinity, and substrate on microbial community structure, metabolism, and functional interactions using triplicate batch cultures started from fecal slurry and incubated with an initial pH of 6.0, 6.5, or

pH and fermentable substrates impose selective pressures on gut microbial communities and their metabolisms. We evaluated the relative contributions of pH, alkalinity, and substrate on microbial community structure, metabolism, and functional interactions using triplicate batch cultures started from fecal slurry and incubated with an initial pH of 6.0, 6.5, or 6.9 and 10 mM glucose, fructose, or cellobiose as the carbon substrate. We analyzed 16S rRNA gene sequences and fermentation products. Microbial diversity was driven by both pH and substrate type. Due to insufficient alkalinity, a drop in pH from 6.0 to ~4.5 clustered pH 6.0 cultures together and distant from pH 6.5 and 6.9 cultures, which experienced only small pH drops. Cellobiose yielded more acidity than alkalinity due to the amount of fermentable carbon, which moved cellobiose pH 6.5 cultures away from other pH 6.5 cultures. The impact of pH on microbial community structure was reflected by fermentative metabolism. Lactate accumulation occurred in pH 6.0 cultures, whereas propionate and acetate accumulations were observed in pH 6.5 and 6.9 cultures and independently from the type of substrate provided. Finally, pH had an impact on the interactions between lactate-producing and -consuming communities. Lactate-producing Streptococcus dominated pH 6.0 cultures, and acetate- and propionate-producing Veillonella, Bacteroides, and Escherichia dominated the cultures started at pH 6.5 and 6.9. Acid inhibition on lactate-consuming species led to lactate accumulation. Our results provide insights into pH-derived changes in fermenting microbiota and metabolisms in the human gut.
Created2017-05-03
130284-Thumbnail Image.png
Description
CTB-MPR is a fusion protein between the B subunit of cholera toxin (CTB) and the membrane-proximal region of gp41 (MPR), the transmembrane envelope protein of Human immunodeficiency virus 1 (HIV-1), and has previously been shown to induce the production of anti-HIV-1 antibodies with antiviral functions. To further improve the design

CTB-MPR is a fusion protein between the B subunit of cholera toxin (CTB) and the membrane-proximal region of gp41 (MPR), the transmembrane envelope protein of Human immunodeficiency virus 1 (HIV-1), and has previously been shown to induce the production of anti-HIV-1 antibodies with antiviral functions. To further improve the design of this candidate vaccine, X-ray crystallography experiments were performed to obtain structural information about this fusion protein. Several variants of CTB-MPR were designed, constructed and recombinantly expressed in Escherichia coli. The first variant contained a flexible GPGP linker between CTB and MPR, and yielded crystals that diffracted to a resolution of 2.3 Å, but only the CTB region was detected in the electron-density map. A second variant, in which the CTB was directly attached to MPR, was shown to destabilize pentamer formation. A third construct containing a polyalanine linker between CTB and MPR proved to stabilize the pentameric form of the protein during purification. The purification procedure was shown to produce a homogeneously pure and monodisperse sample for crystallization. Initial crystallization experiments led to pseudo-crystals which were ordered in only two dimensions and were disordered in the third dimension. Nanocrystals obtained using the same precipitant showed promising X-ray diffraction to 5 Å resolution in femtosecond nanocrystallography experiments at the Linac Coherent Light Source at the SLAC National Accelerator Laboratory. The results demonstrate the utility of femtosecond X-ray crystallography to enable structural analysis based on nano/microcrystals of a protein for which no macroscopic crystals ordered in three dimensions have been observed before.
ContributorsLee, Ho-Hsien (Author) / Cherni, Irene (Author) / Yu, HongQi (Author) / Fromme, Raimund (Author) / Doran, Jeffrey (Author) / Grotjohann, Ingo (Author) / Mittman, Michele (Author) / Basu, Shibom (Author) / Deb, Arpan (Author) / Dorner, Katerina (Author) / Aquila, Andrew (Author) / Barty, Anton (Author) / Boutet, Sebastien (Author) / Chapman, Henry N. (Author) / Doak, R. Bruce (Author) / Hunter, Mark (Author) / James, Daniel (Author) / Kirian, Richard (Author) / Kupitz, Christopher (Author) / Lawrence, Robert (Author) / Liu, Haiguang (Author) / Nass, Karol (Author) / Schlichting, Ilme (Author) / Schmidt, Kevin (Author) / Seibert, M. Marvin (Author) / Shoeman, Robert L. (Author) / Spence, John (Author) / Stellato, Francesco (Author) / Weierstall, Uwe (Author) / Williams, Garth J. (Author) / Yoon, Chun Hong (Author) / Wang, Dingjie (Author) / Zatsepin, Nadia (Author) / Hogue, Brenda (Author) / Matoba, Nobuyuki (Author) / Fromme, Petra (Author) / Mor, Tsafrir (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Department of Chemistry and Biochemistry (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Biodesign Institute (Contributor) / Infectious Diseases and Vaccinology (Contributor) / Department of Physics (Contributor)
Created2014-08-20
130259-Thumbnail Image.png
Description
Background
Syngas fermentation, the bioconversion of CO, CO[subscript 2], and H[subscript 2] to biofuels and chemicals, has undergone considerable optimization for industrial applications. Even more, full-scale plants for ethanol production from syngas fermentation by pure cultures are being built worldwide. The composition of syngas depends on the feedstock gasified and the

Background
Syngas fermentation, the bioconversion of CO, CO[subscript 2], and H[subscript 2] to biofuels and chemicals, has undergone considerable optimization for industrial applications. Even more, full-scale plants for ethanol production from syngas fermentation by pure cultures are being built worldwide. The composition of syngas depends on the feedstock gasified and the gasification conditions. However, it remains unclear how different syngas mixtures affect the metabolism of carboxidotrophs, including the ethanol/acetate ratios. In addition, the potential application of mixed cultures in syngas fermentation and their advantages over pure cultures have not been deeply explored. In this work, the effects of CO[subscript 2] and H[subscript 2] on the CO metabolism by pure and mixed cultures were studied and compared. For this, a CO-enriched mixed culture and two isolated carboxidotrophs were grown with different combinations of syngas components (CO, CO:H[subscript 2], CO:CO[subscript 2], or CO:CO[subscript 2]:H[subscript 2]).
Results
The CO metabolism of the mixed culture was somehow affected by the addition of CO[subscript 2] and/or H[subscript 2], but the pure cultures were more sensitive to changes in gas composition than the mixed culture. CO[subscript 2] inhibited CO oxidation by the Pleomorphomonas-like isolate and decreased the ethanol/acetate ratio by the Acetobacterium-like isolate. H[subscript 2] did not inhibit ethanol or H[subscript 2] production by the Acetobacterium and Pleomorphomonas isolates, respectively, but decreased their CO consumption rates. As part of the mixed culture, these isolates, together with other microorganisms, consumed H[subscript 2] and CO[subscript 2] (along with CO) for all conditions tested and at similar CO consumption rates (2.6 ± 0.6 mmol CO L[superscript −1] day[superscript −1]), while maintaining overall function (acetate production). Providing a continuous supply of CO by membrane diffusion caused the mixed culture to switch from acetate to ethanol production, presumably due to the increased supply of electron donor. In parallel with this change in metabolic function, the structure of the microbial community became dominated by Geosporobacter phylotypes, instead of Acetobacterium and Pleomorphomonas phylotypes.
Conclusions
These results provide evidence for the potential of mixed-culture syngas fermentation, since the CO-enriched mixed culture showed high functional redundancy, was resilient to changes in syngas composition, and was capable of producing acetate or ethanol as main products of CO metabolism.
Created2017-09-16
130350-Thumbnail Image.png
Description

The membrane proximal region (MPR, residues 649–683) and transmembrane domain (TMD, residues 684–705) of the gp41 subunit of HIV-1’s envelope protein are highly conserved and are important in viral mucosal transmission, virus attachment and membrane fusion with target cells. Several structures of the trimeric membrane proximal external region (residues 662–683)

The membrane proximal region (MPR, residues 649–683) and transmembrane domain (TMD, residues 684–705) of the gp41 subunit of HIV-1’s envelope protein are highly conserved and are important in viral mucosal transmission, virus attachment and membrane fusion with target cells. Several structures of the trimeric membrane proximal external region (residues 662–683) of MPR have been reported at the atomic level; however, the atomic structure of the TMD still remains unknown. To elucidate the structure of both MPR and TMD, we expressed the region spanning both domains, MPR-TM (residues 649–705), in Escherichia coli as a fusion protein with maltose binding protein (MBP). MPR-TM was initially fused to the C-terminus of MBP via a 42 aa-long linker containing a TEV protease recognition site (MBP-linker-MPR-TM).

Biophysical characterization indicated that the purified MBP-linker-MPR-TM protein was a monodisperse and stable candidate for crystallization. However, crystals of the MBP-linker-MPR-TM protein could not be obtained in extensive crystallization screens. It is possible that the 42 residue-long linker between MBP and MPR-TM was interfering with crystal formation. To test this hypothesis, the 42 residue-long linker was replaced with three alanine residues. The fusion protein, MBP-AAA-MPR-TM, was similarly purified and characterized. Significantly, both the MBP-linker-MPR-TM and MBP-AAA-MPR-TM proteins strongly interacted with broadly neutralizing monoclonal antibodies 2F5 and 4E10. With epitopes accessible to the broadly neutralizing antibodies, these MBP/MPR-TM recombinant proteins may be in immunologically relevant conformations that mimic a pre-hairpin intermediate of gp41.

ContributorsGong, Zhen (Author) / Martin Garcia, Jose Manuel (Author) / Daskalova, Sasha (Author) / Craciunescu, Felicia (Author) / Song, Lusheng (Author) / Dorner, Katerina (Author) / Hansen, Debra (Author) / Yang, Jay-How (Author) / LaBaer, Joshua (Author) / Hogue, Brenda (Author) / Mor, Tsafrir (Author) / Fromme, Petra (Author) / Department of Chemistry and Biochemistry (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / Infectious Diseases and Vaccinology (Contributor) / Innovations in Medicine (Contributor) / Personalized Diagnostics (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2015-08-21
130326-Thumbnail Image.png
Description

Inhibition by ammonium at concentrations above 1000 mgN/L is known to harm the methanogenesis phase of anaerobic digestion. We anaerobically digested swine waste and achieved steady state COD-removal efficiency of around 52% with no fatty-acid or H[subscript 2] accumulation. As the anaerobic microbial community adapted to the gradual increase of total

Inhibition by ammonium at concentrations above 1000 mgN/L is known to harm the methanogenesis phase of anaerobic digestion. We anaerobically digested swine waste and achieved steady state COD-removal efficiency of around 52% with no fatty-acid or H[subscript 2] accumulation. As the anaerobic microbial community adapted to the gradual increase of total ammonia-N (NH[subscript 3]-N) from 890 ± 295 to 2040 ± 30 mg/L, the Bacterial and Archaeal communities became less diverse. Phylotypes most closely related to hydrogenotrophic Methanoculleus (36.4%) and Methanobrevibacter (11.6%), along with acetoclastic Methanosaeta (29.3%), became the most abundant Archaeal sequences during acclimation. This was accompanied by a sharp increase in the relative abundances of phylotypes most closely related to acetogens and fatty-acid producers (Clostridium, Coprococcus, and Sphaerochaeta) and syntrophic fatty-acid Bacteria (Syntrophomonas, Clostridium, Clostridiaceae species, and Cloacamonaceae species) that have metabolic capabilities for butyrate and propionate fermentation, as well as for reverse acetogenesis. Our results provide evidence countering a prevailing theory that acetoclastic methanogens are selectively inhibited when the total ammonia-N concentration is greater than ~1000 mgN/L. Instead, acetoclastic and hydrogenotrophic methanogens coexisted in the presence of total ammonia-N of ~2000 mgN/L by establishing syntrophic relationships with fatty-acid fermenters, as well as homoacetogens able to carry out forward and reverse acetogenesis.

Created2016-08-11
130319-Thumbnail Image.png
Description

Serial femtosecond crystallography requires reliable and efficient delivery of fresh crystals across the beam of an X-ray free-electron laser over the course of an experiment. We introduce a double-flow focusing nozzle to meet this challenge, with significantly reduced sample consumption, while improving jet stability over previous generations of nozzles. We

Serial femtosecond crystallography requires reliable and efficient delivery of fresh crystals across the beam of an X-ray free-electron laser over the course of an experiment. We introduce a double-flow focusing nozzle to meet this challenge, with significantly reduced sample consumption, while improving jet stability over previous generations of nozzles. We demonstrate its use to determine the first room-temperature structure of RNA polymerase II at high resolution, revealing new structural details. Moreover, the double flow-focusing nozzles were successfully tested with three other protein samples and the first room temperature structure of an extradiol ring-cleaving dioxygenase was solved by utilizing the improved operation and characteristics of these devices.

ContributorsOberthuer, Dominik (Author) / Knoska, Juraj (Author) / Wiedorn, Max O. (Author) / Beyerlein, Kenneth R. (Author) / Bushnell, David A. (Author) / Kovaleva, Elena G. (Author) / Heymann, Michael (Author) / Gumprecht, Lars (Author) / Kirian, Richard (Author) / Barty, Anton (Author) / Mariani, Valerio (Author) / Tolstikova, Aleksandra (Author) / Adriano, Luigi (Author) / Awel, Salah (Author) / Barthelmess, Miriam (Author) / Dorner, Katerina (Author) / Xavier, P. Lourdu (Author) / Yefanov, Oleksandr (Author) / James, Daniel (Author) / Nelson, Garrett (Author) / Wang, Dingjie (Author) / Calvey, George (Author) / Chen, Yujie (Author) / Schmidt, Andrea (Author) / Szczepek, Michael (Author) / Frielingsdorf, Stefan (Author) / Lenz, Oliver (Author) / Snell, Edward (Author) / Robinson, Philip J. (Author) / Sarler, Bozidar (Author) / Belsak, Grega (Author) / Macek, Marjan (Author) / Wilde, Fabian (Author) / Aquila, Andrew (Author) / Boutet, Sebastien (Author) / Liang, Mengning (Author) / Hunter, Mark S. (Author) / Scheerer, Patrick (Author) / Lipscomb, John D. (Author) / Weierstall, Uwe (Author) / Kornberg, Roger D. (Author) / Spence, John (Author) / Pollack, Lois (Author) / Chapman, Henry N. (Author) / Bajt, Sasa (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor)
Created2017-03-16
130316-Thumbnail Image.png
Description
Antibodies are essential for structural determinations and functional studies of membrane proteins, but antibody generation is limited by the availability of properly-folded and purified antigen. We describe the first application of genetic immunization to a structurally diverse set of membrane proteins to show that immunization of mice with DNA alone

Antibodies are essential for structural determinations and functional studies of membrane proteins, but antibody generation is limited by the availability of properly-folded and purified antigen. We describe the first application of genetic immunization to a structurally diverse set of membrane proteins to show that immunization of mice with DNA alone produced antibodies against 71% (n = 17) of the bacterial and viral targets. Antibody production correlated with prior reports of target immunogenicity in host organisms, underscoring the efficiency of this DNA-gold micronanoplex approach. To generate each antigen for antibody characterization, we also developed a simple in vitro membrane protein expression and capture method. Antibody specificity was demonstrated upon identifying, for the first time, membrane-directed heterologous expression of the native sequences of the FopA and FTT1525 virulence determinants from the select agent Francisella tularensis SCHU S4. These approaches will accelerate future structural and functional investigations of therapeutically-relevant membrane proteins.
ContributorsHansen, Debra (Author) / Robida, Mark (Author) / Craciunescu, Felicia (Author) / Loskutov, Andrey (Author) / Dorner, Katerina (Author) / Rodenberry, John-Charles (Author) / Wang, Xiao (Author) / Olson, Tien (Author) / Patel, Hetal (Author) / Fromme, Petra (Author) / Sykes, Kathryn (Author) / Biodesign Institute (Contributor) / Innovations in Medicine (Contributor) / Applied Structural Discovery (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor)
Created2016-02-24
130351-Thumbnail Image.png
Description

Viral protein U (Vpu) is a type-III integral membrane protein encoded by Human Immunodeficiency Virus-1 (HIV- 1). It is expressed in infected host cells and plays several roles in viral progeny escape from infected cells, including down-regulation of CD4 receptors. But key structure/function questions remain regarding the mechanisms by which

Viral protein U (Vpu) is a type-III integral membrane protein encoded by Human Immunodeficiency Virus-1 (HIV- 1). It is expressed in infected host cells and plays several roles in viral progeny escape from infected cells, including down-regulation of CD4 receptors. But key structure/function questions remain regarding the mechanisms by which the Vpu protein contributes to HIV-1 pathogenesis. Here we describe expression of Vpu in bacteria, its purification and characterization. We report the successful expression of PelB-Vpu in Escherichia coli using the leader peptide pectate lyase B (PelB) from Erwinia carotovora. The protein was detergent extractable and could be isolated in a very pure form. We demonstrate that the PelB signal peptide successfully targets Vpu to the cell membranes and inserts it as a type I membrane protein. PelB-Vpu was biophysically characterized by circular dichroism and dynamic light scattering experiments and was shown to be an excellent candidate for elucidating structural models.

ContributorsDeb, Arpan (Author) / Johnson, William (Author) / Kline, Alexander (Author) / Scott, Boston (Author) / Meador, Lydia (Author) / Srinivas, Dustin (Author) / Martin Garcia, Jose Manuel (Author) / Dorner, Katerina (Author) / Borges, Chad (Author) / Misra, Rajeev (Author) / Hogue, Brenda (Author) / Fromme, Petra (Author) / Mor, Tsafrir (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Biodesign Institute (Contributor) / School of Molecular Sciences (Contributor) / Applied Structural Discovery (Contributor) / Personalized Diagnostics (Contributor)
Created2017-02-22
130431-Thumbnail Image.png
Description
We studied the microbial community structure of pilot two-stage membrane biofilm reactors (MBfRs) designed to reduce nitrate (NO[subscript 3]–) and perchlorate (ClO[subscript 4]–) in contaminated groundwater. The groundwater also contained oxygen (O[subscript 2]) and sulfate (SO[2 over 4]–), which became important electron sinks that affected the NO[subscript 3]– and ClO[subscript

We studied the microbial community structure of pilot two-stage membrane biofilm reactors (MBfRs) designed to reduce nitrate (NO[subscript 3]–) and perchlorate (ClO[subscript 4]–) in contaminated groundwater. The groundwater also contained oxygen (O[subscript 2]) and sulfate (SO[2 over 4]–), which became important electron sinks that affected the NO[subscript 3]– and ClO[subscript 4]– removal rates. Using pyrosequencing, we elucidated how important phylotypes of each “primary” microbial group, i.e., denitrifying bacteria (DB), perchlorate-reducing bacteria (PRB), and sulfate-reducing bacteria (SRB), responded to changes in electron-acceptor loading. UniFrac, principal coordinate analysis (PCoA), and diversity analyses documented that the microbial community of biofilms sampled when the MBfRs had a high acceptor loading were phylogenetically distant from and less diverse than the microbial community of biofilm samples with lower acceptor loadings. Diminished acceptor loading led to SO[2 over 4]– reduction in the lag MBfR, which allowed Desulfovibrionales (an SRB) and Thiothrichales (sulfur-oxidizers) to thrive through S cycling. As a result of this cooperative relationship, they competed effectively with DB/PRB phylotypes such as Xanthomonadales and Rhodobacterales. Thus, pyrosequencing illustrated that while DB, PRB, and SRB responded predictably to changes in acceptor loading, a decrease in total acceptor loading led to important shifts within the “primary” groups, the onset of other members (e.g., Thiothrichales), and overall greater diversity.
Created2014-07-01