The title “Regents’ Professor” is the highest faculty honor awarded at Arizona State University. It is conferred on ASU faculty who have made pioneering contributions in their areas of expertise, who have achieved a sustained level of distinction, and who enjoy national and international recognition for these accomplishments. This collection contains primarily open access works by ASU Regents' Professors.

Displaying 1 - 10 of 13
Filtering by

Clear all filters

130369-Thumbnail Image.png
Description

This paper discusses the properties of cancer cells from a new perspective based on an analogy with phase transitions in physical systems. Similarities in terms of instabilities and attractor states are outlined and differences discussed. While physical phase transitions typically occur at or near thermodynamic equilibrium, a normal-to-cancer (NTC) transition

This paper discusses the properties of cancer cells from a new perspective based on an analogy with phase transitions in physical systems. Similarities in terms of instabilities and attractor states are outlined and differences discussed. While physical phase transitions typically occur at or near thermodynamic equilibrium, a normal-to-cancer (NTC) transition is a dynamical non-equilibrium phenomenon, which depends on both metabolic energy supply and local physiological conditions. A number of implications for preventative and therapeutic strategies are outlined.

Created2011-08-25
130321-Thumbnail Image.png
Description
We have fabricated a high mobility device, composed of a monolayer graphene flake sandwiched between two sheets of hexagonal boron nitride. Conductance fluctuations as functions of a back gate voltage and magnetic field were obtained to check for ergodicity. Non-linear dynamics concepts were used to study the nature of these

We have fabricated a high mobility device, composed of a monolayer graphene flake sandwiched between two sheets of hexagonal boron nitride. Conductance fluctuations as functions of a back gate voltage and magnetic field were obtained to check for ergodicity. Non-linear dynamics concepts were used to study the nature of these fluctuations. The distribution of eigenvalues was estimated from the conductance fluctuations with Gaussian kernels and it indicates that the carrier motion is chaotic at low temperatures. We argue that a two-phase dynamical fluid model best describes the transport in this system and can be used to explain the violation of the so-called ergodic hypothesis found in graphene.
Contributorsda Cunha, C. R. (Author) / Mineharu, M. (Author) / Matsunaga, M. (Author) / Matsumoto, N. (Author) / Chuang, C. (Author) / Ochiai, Y. (Author) / Kim, G.-H. (Author) / Watanabe, K. (Author) / Taniguchi, T. (Author) / Ferry, David (Author) / Aoki, N. (Author) / Ira A. Fulton Schools of Engineering (Contributor) / School of Electrical, Computer and Energy Engineering (Contributor)
Created2016-09-09
130342-Thumbnail Image.png
Description
Background
Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D) objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D,

Background
Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D) objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D, assess its variation with malignancy, and investigate whether such variation correlates with standard nuclear grading criteria.
Methodology
We applied micro-optical computed tomographic imaging and automated 3D nuclear morphometry to quantify and compare morphological variations between human cell lines derived from normal, benign fibrocystic or malignant breast epithelium. To reproduce the appearance and contrast in clinical cytopathology images, we stained cells with hematoxylin and eosin and obtained 3D images of 150 individual stained cells of each cell type at sub-micron, isotropic resolution. Applying volumetric image analyses, we computed 42 3D morphological and textural descriptors of cellular and nuclear structure.
Principal Findings
We observed four distinct nuclear shape categories, the predominant being a mushroom cap shape. Cell and nuclear volumes increased from normal to fibrocystic to metastatic type, but there was little difference in the volume ratio of nucleus to cytoplasm (N/C ratio) between the lines. Abnormal cell nuclei had more nucleoli, markedly higher density and clumpier chromatin organization compared to normal. Nuclei of non-tumorigenic, fibrocystic cells exhibited larger textural variations than metastatic cell nuclei. At p<0.0025 by ANOVA and Kruskal-Wallis tests, 90% of our computed descriptors statistically differentiated control from abnormal cell populations, but only 69% of these features statistically differentiated the fibrocystic from the metastatic cell populations.
Conclusions
Our results provide a new perspective on nuclear structure variations associated with malignancy and point to the value of automated quantitative 3D nuclear morphometry as an objective tool to enable development of sensitive and specific nuclear grade classification in breast cancer diagnosis.
Created2012-01-05
130313-Thumbnail Image.png
Description
Diacylglycerol kinase catalyses the ATP-dependent conversion of diacylglycerol to phosphatidic acid in the plasma membrane of Escherichia coli. The small size of this integral membrane trimer, which has 121 residues per subunit, means that available protein must be used economically to craft three catalytic and substrate-binding sites centred about the

Diacylglycerol kinase catalyses the ATP-dependent conversion of diacylglycerol to phosphatidic acid in the plasma membrane of Escherichia coli. The small size of this integral membrane trimer, which has 121 residues per subunit, means that available protein must be used economically to craft three catalytic and substrate-binding sites centred about the membrane/cytosol interface. How nature has accomplished this extraordinary feat is revealed here in a crystal structure of the kinase captured as a ternary complex with bound lipid substrate and an ATP analogue. Residues, identified as essential for activity by mutagenesis, decorate the active site and are rationalized by the ternary structure. The γ-phosphate of the ATP analogue is positioned for direct transfer to the primary hydroxyl of the lipid whose acyl chain is in the membrane. A catalytic mechanism for this unique enzyme is proposed. The active site architecture shows clear evidence of having arisen by convergent evolution.
ContributorsLi, Dianfan (Author) / Stansfeld, Phillip J. (Author) / Sansom, Mark S. P. (Author) / Keogh, Aaron (Author) / Vogeley, Lutz (Author) / Howe, Nicole (Author) / Lyons, Joseph A. (Author) / Aragao, David (Author) / Fromme, Petra (Author) / Fromme, Raimund (Author) / Basu, Shibom (Author) / Grotjohann, Ingo (Author) / Kupitz, Christopher (Author) / Rendek, Kimberley (Author) / Weierstall, Uwe (Author) / Zatsepin, Nadia (Author) / Cherezov, Vadim (Author) / Liu, Wei (Author) / Bandaru, Sateesh (Author) / English, Niall J. (Author) / Gati, Cornelius (Author) / Barty, Anton (Author) / Yefanov, Oleksandr (Author) / Chapman, Henry N. (Author) / Diederichs, Kay (Author) / Messerschmidt, Marc (Author) / Boutet, Sebastien (Author) / Williams, Garth J. (Author) / Seibert, M. Marvin (Author) / Caffrey, Martin (Author) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / Department of Physics (Contributor)
Created2015-12-17
130318-Thumbnail Image.png
Description
Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement.

Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within the crystal lattice is confirmed by time-resolved visible absorption spectroscopy. This study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX.
ContributorsNogly, Przemyslaw (Author) / Panneels, Valerie (Author) / Nelson, Garrett (Author) / Gati, Cornelius (Author) / Kimura, Tetsunari (Author) / Milne, Christopher (Author) / Milathianaki, Despina (Author) / Kubo, Minoru (Author) / Wu, Wenting (Author) / Conrad, Chelsie (Author) / Coe, Jesse (Author) / Bean, Richard (Author) / Zhao, Yun (Author) / Bath, Petra (Author) / Dods, Robert (Author) / Harimoorthy, Rajiv (Author) / Beyerlein, Kenneth R. (Author) / Rheinberger, Jan (Author) / James, Daniel (Author) / Deponte, Daniel (Author) / Li, Chufeng (Author) / Sala, Leonardo (Author) / Williams, Garth J. (Author) / Hunter, Mark S. (Author) / Koglin, Jason E. (Author) / Berntsen, Peter (Author) / Nango, Eriko (Author) / Iwata, So (Author) / Chapman, Henry N. (Author) / Fromme, Petra (Author) / Frank, Matthias (Author) / Abela, Rafael (Author) / Boutet, Sebastien (Author) / Barty, Anton (Author) / White, Thomas A. (Author) / Weierstall, Uwe (Author) / Spence, John (Author) / Neutze, Richard (Author) / Schertler, Gebhard (Author) / Standfuss, Jorg (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / School of Molecular Sciences (Contributor)
Created2016-08-22
130432-Thumbnail Image.png
Description
Quantum weak measurements with states both pre- and post-selected offer a window into a hitherto neglected sector of quantum mechanics. A class of such systems involves time dependent evolution with transitions possible. In this paper we explore two very simple systems in this class. The first is a toy model

Quantum weak measurements with states both pre- and post-selected offer a window into a hitherto neglected sector of quantum mechanics. A class of such systems involves time dependent evolution with transitions possible. In this paper we explore two very simple systems in this class. The first is a toy model representing the decay of an excited atom. The second is the tunneling of a particle through a barrier. The post-selection criteria are chosen as follows: at the final time, the atom remains in its initial excited state for the first example and the particle remains behind the barrier for the second. We then ask what weak values are predicted in the physical environment of the atom (to which no net energy has been transferred) and in the region beyond the barrier (to which the particle has not tunneled). Thus, just as the dog that didn't bark in Arthur Conan Doyle's story Silver Blaze gave Sherlock Holmes meaningful information about the dog's non-canine environment, here we probe whether the particle that has not decayed or has not tunneled can provide measurable information about physical changes in the environment. Previous work suggests that very large weak values might arise in these regions for long durations between pre- and post-selection times. Our calculations reveal some distinct differences between the two model systems.
Created2014-06-13
130433-Thumbnail Image.png
Description
The Physics and Chemistry of Surfaces and Interfaces conference has maintained a focus on the interfacial and surface properties of materials since its initiation in 1974. The conference continues to be a major force in this field, bringing together scientists from a variety of disciplines to focus upon the science

The Physics and Chemistry of Surfaces and Interfaces conference has maintained a focus on the interfacial and surface properties of materials since its initiation in 1974. The conference continues to be a major force in this field, bringing together scientists from a variety of disciplines to focus upon the science of interfaces and surfaces. Here, a historical view of the development of the conference and a discussion of some of the themes that have been focal points for many years are presented.
Created2013
130294-Thumbnail Image.png
Description
Open-ended evolution (OEE) is relevant to a variety of biological, artificial and technological systems, but has been challenging to reproduce in silico. Most theoretical efforts focus on key aspects of open-ended evolution as it appears in biology. We recast the problem as a more general one in dynamical systems theory,

Open-ended evolution (OEE) is relevant to a variety of biological, artificial and technological systems, but has been challenging to reproduce in silico. Most theoretical efforts focus on key aspects of open-ended evolution as it appears in biology. We recast the problem as a more general one in dynamical systems theory, providing simple criteria for open-ended evolution based on two hallmark features: unbounded evolution and innovation. We define unbounded evolution as patterns that are non-repeating within the expected Poincare recurrence time of an isolated system, and innovation as trajectories not observed in isolated systems. As a case study, we implement novel variants of cellular automata (CA) where the update rules are allowed to vary with time in three alternative ways. Each is capable of generating conditions for open-ended evolution, but vary in their ability to do so. We find that state-dependent dynamics, regarded as a hallmark of life, statistically out-performs other candidate mechanisms, and is the only mechanism to produce open-ended evolution in a scalable manner, essential to the notion of ongoing evolution. This analysis suggests a new framework for unifying mechanisms for generating OEE with features distinctive to life and its artifacts, with broad applicability to biological and artificial systems.
Created2017-04-20
130295-Thumbnail Image.png
Description

Cancer is sometimes depicted as a reversion to single cell behavior in cells adapted to live in a multicellular assembly. If this is the case, one would expect that mutation in cancer disrupts functional mechanisms that suppress cell-level traits detrimental to multicellularity. Such mechanisms should have evolved with or after

Cancer is sometimes depicted as a reversion to single cell behavior in cells adapted to live in a multicellular assembly. If this is the case, one would expect that mutation in cancer disrupts functional mechanisms that suppress cell-level traits detrimental to multicellularity. Such mechanisms should have evolved with or after the emergence of multicellularity. This leads to two related, but distinct hypotheses: 1) Somatic mutations in cancer will occur in genes that are younger than the emergence of multicellularity (1000 million years [MY]); and 2) genes that are frequently mutated in cancer and whose mutations are functionally important for the emergence of the cancer phenotype evolved within the past 1000 million years, and thus would exhibit an age distribution that is skewed to younger genes. In order to investigate these hypotheses we estimated the evolutionary ages of all human genes and then studied the probability of mutation and their biological function in relation to their age and genomic location for both normal germline and cancer contexts.

We observed that under a model of uniform random mutation across the genome, controlled for gene size, genes less than 500 MY were more frequently mutated in both cases. Paradoxically, causal genes, defined in the COSMIC Cancer Gene Census, were depleted in this age group. When we used functional enrichment analysis to explain this unexpected result we discovered that COSMIC genes with recessive disease phenotypes were enriched for DNA repair and cell cycle control. The non-mutated genes in these pathways are orthologous to those underlying stress-induced mutation in bacteria, which results in the clustering of single nucleotide variations. COSMIC genes were less common in regions where the probability of observing mutational clusters is high, although they are approximately 2-fold more likely to harbor mutational clusters compared to other human genes. Our results suggest this ancient mutational response to stress that evolved among prokaryotes was co-opted to maintain diversity in the germline and immune system, while the original phenotype is restored in cancer. Reversion to a stress-induced mutational response is a hallmark of cancer that allows for effectively searching “protected” genome space where genes causally implicated in cancer are located and underlies the high adaptive potential and concomitant therapeutic resistance that is characteristic of cancer.

Created2017-04-25
130301-Thumbnail Image.png
Description
Serial femtosecond crystallography (SFX) takes advantage of extremely bright and ultrashort pulses produced by x-ray free-electron lasers (XFELs), allowing for the collection of high-resolution diffraction intensities from micrometer-sized crystals at room temperature with minimal radiation damage, using the principle of “diffraction-before-destruction.” However, de novo structure factor phase determination using XFELs

Serial femtosecond crystallography (SFX) takes advantage of extremely bright and ultrashort pulses produced by x-ray free-electron lasers (XFELs), allowing for the collection of high-resolution diffraction intensities from micrometer-sized crystals at room temperature with minimal radiation damage, using the principle of “diffraction-before-destruction.” However, de novo structure factor phase determination using XFELs has been difficult so far. We demonstrate the ability to solve the crystallographic phase problem for SFX data collected with an XFEL using the anomalous signal from native sulfur atoms, leading to a bias-free room temperature structure of the human A[subscript 2A] adenosine receptor at 1.9 Å resolution. The advancement was made possible by recent improvements in SFX data analysis and the design of injectors and delivery media for streaming hydrated microcrystals. This general method should accelerate structural studies of novel difficult-to-crystallize macromolecules and their complexes.
ContributorsBatyuk, Alexander (Author) / Galli, Lorenzo (Author) / Ishchenko, Andrii (Author) / Han, Gye Won (Author) / Gati, Cornelius (Author) / Popov, Petr A. (Author) / Lee, Ming-Yue (Author) / Stauch, Benjamin (Author) / White, Thomas A. (Author) / Barty, Anton (Author) / Aquila, Andrew (Author) / Hunter, Mark S. (Author) / Liang, Mengning (Author) / Boutet, Sebastien (Author) / Pu, Mengchen (Author) / Liu, Zhi-jie (Author) / Nelson, Garrett (Author) / James, Daniel (Author) / Li, Chufeng (Author) / Zhao, Yun (Author) / Spence, John (Author) / Liu, Wei (Author) / Fromme, Petra (Author) / Katritch, Vsevolod (Author) / Weierstall, Uwe (Author) / Stevens, Raymond C. (Author) / Cherezov, Vadim (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / School of Molecular Sciences (Contributor)
Created2016-09-23