The title “Regents’ Professor” is the highest faculty honor awarded at Arizona State University. It is conferred on ASU faculty who have made pioneering contributions in their areas of expertise, who have achieved a sustained level of distinction, and who enjoy national and international recognition for these accomplishments. This collection contains primarily open access works by ASU Regents' Professors.

Displaying 1 - 10 of 17
Filtering by

Clear all filters

130289-Thumbnail Image.png
Description

The occurrence of nonliquid and liquid physical states of submicron atmospheric particulate matter (PM) downwind of an urban region in central Amazonia was investigated. Measurements were conducted during two intensive operating periods (IOP1 and IOP2) that took place during the wet and dry seasons of the GoAmazon2014/5 campaign. Air masses

The occurrence of nonliquid and liquid physical states of submicron atmospheric particulate matter (PM) downwind of an urban region in central Amazonia was investigated. Measurements were conducted during two intensive operating periods (IOP1 and IOP2) that took place during the wet and dry seasons of the GoAmazon2014/5 campaign. Air masses representing variable influences of background conditions, urban pollution, and regional- and continental-scale biomass burning passed over the research site. As the air masses varied, particle rebound fraction, an indicator of physical state, was measured in real time at ground level using an impactor apparatus. Micrographs collected by transmission electron microscopy confirmed that liquid particles adhered, while nonliquid particles rebounded. Relative humidity (RH) was scanned to collect rebound curves.

When the apparatus RH matched ambient RH, 95 % of the particles adhered as a campaign average. Secondary organic material, produced for the most part by the oxidation of volatile organic compounds emitted from the forest, produces liquid PM over this tropical forest. During periods of anthropogenic influence, by comparison, the rebound fraction dropped to as low as 60 % at 95 % RH. Analyses of the mass spectra of the atmospheric PM by positive-matrix factorization (PMF) and of concentrations of carbon monoxide, total particle number, and oxides of nitrogen were used to identify time periods affected by anthropogenic influences, including both urban pollution and biomass burning. The occurrence of nonliquid PM at high RH correlated with these indicators of anthropogenic influence. A linear model having as output the rebound fraction and as input the PMF factor loadings explained up to 70 % of the variance in the observed rebound fractions. Anthropogenic influences can contribute to the presence of nonliquid PM in the atmospheric particle population through the combined effects of molecular species that increase viscosity when internally mixed with background PM and increased concentrations of nonliquid anthropogenic particles in external mixtures of anthropogenic and biogenic PM.

ContributorsBateman, Adam P. (Author) / Gong, Zhaoheng (Author) / Harder, Tristan H. (Author) / de Sa, Suzane S. (Author) / Wang, Bingbing (Author) / Castillo, Paulo (Author) / China, Swarup (Author) / Liu, Yingjun (Author) / O'Brien, Rachel E. (Author) / Palm, Brett B. (Author) / Shiu, Hung-Wei (Author) / Cirino, Glauber G. (Author) / Thalman, Ryan (Author) / Adachi, Kouji (Author) / Alexander, M. Lizabeth (Author) / Artaxo, Paulo (Author) / Bertram, Allan K. (Author) / Buseck, Peter (Author) / Gilles, Mary K. (Author) / Jimenez, Jose L. (Author) / Laskin, Alexander (Author) / Manzi, Antonio O. (Author) / Sedlacek, Arthur (Author) / Souza, Rodrigo A. F. (Author) / Wang, Jian (Author) / Zaveri, Rahul (Author) / Martin, Scot T. (Author) / College of Liberal Arts and Sciences (Contributor) / School of Earth and Space Exploration (Contributor) / School of Molecular Sciences (Contributor)
Created2017-02-06
130272-Thumbnail Image.png
Description
For many species, migration evolves to allow organisms to access better resources. However, the proximate factors that trigger these developmental changes, and how and why these vary across species, remain poorly understood. One prominent hypothesis is that poor-quality food promotes development of migratory phenotypes and this has been clearly shown

For many species, migration evolves to allow organisms to access better resources. However, the proximate factors that trigger these developmental changes, and how and why these vary across species, remain poorly understood. One prominent hypothesis is that poor-quality food promotes development of migratory phenotypes and this has been clearly shown for some polyphenic insects. In other animals, particularly long-distance bird migrants, it is clear that high-quality food is required to prepare animals for a successful migration. We tested the effect of diet quality on the flight behaviour and morphology of the Mongolian locust, Oedaleus asiaticus. Locusts reared at high population density and fed low-N grass (performance-enhancing for this species) had enhanced migratory morphology relative to locusts fed high-N grass. Furthermore, locusts fed synthetic diets with an optimal 1 : 2 protein : carbohydrate ratio flew for longer times than locusts fed diets with lower or higher protein : carbohydrate ratios. In contrast to the hypothesis that performance-degrading food should enhance migration, our results support the more nuanced hypothesis that high-quality diets promote development of migratory characteristics when migration is physiologically challenging.
ContributorsCease, Arianne (Author) / Harrison, Jon (Author) / Hao, Shuguang (Author) / Niren, Danielle (Author) / Zhang, Guangming (Author) / Kang, Le (Author) / Elser, James (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor) / School of Sustainability (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2017-06-07
130261-Thumbnail Image.png
Description
The growth rate hypothesis predicts that organisms with higher maximum growth rates will also have higher body percent phosphorus (P) due to the increased demand for ribosomal RNA production needed to sustain rapid growth. However, this hypothesis was formulated for invertebrates growing at the same temperature. Within a biologically relevant

The growth rate hypothesis predicts that organisms with higher maximum growth rates will also have higher body percent phosphorus (P) due to the increased demand for ribosomal RNA production needed to sustain rapid growth. However, this hypothesis was formulated for invertebrates growing at the same temperature. Within a biologically relevant temperature range, increased temperatures can lead to more rapid growth, suggesting that organisms in warmer environments might also contain more P per gram of dry mass. However, since higher growth rates at higher temperature can be supported by more rapid protein synthesis per ribosome rather than increased ribosome investment, increasing temperature might not lead to a positive relationship between growth and percent P. We tested the growth rate hypothesis by examining two genera of Neotropical stream grazers, the leptophlebiid mayfly Thraulodes and the bufonid toad tadpole Rhinella. We measured the body percent P of field-collected Thraulodes as well as the stoichiometry of periphyton resources in six Panamanian streams over an elevational gradient spanning approximately 1,100 m and 7°C in mean annual temperature. We also measured Thraulodes growth rates using in situ growth chambers in two of these streams. Finally, we conducted temperature manipulation experiments with both Thraulodes and Rhinella at the highest and lowest elevation sites and measured differences in percent P and growth rates. Thraulodes body percent P increased with temperature across the six streams, and average specific growth rate was higher in the warmer lowland stream. In the temperature manipulation experiments, both taxa exhibited higher growth rate and body percent P in the lowland experiments regardless of experimental temperature, but growth rate and body percent P of individuals were not correlated. Although we found that Thraulodes from warmer streams grew more rapidly and had higher body percent P, our experimental results suggest that the growth rate hypothesis does not apply across temperatures. Instead, our results indicate that factors other than temperature drive variation in organismal percent P among sites.
ContributorsMoody, Eric (Author) / Rugenski, Amanda (Author) / Sabo, John (Author) / Turner, Benjamin L. (Author) / Elser, James (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2017-04-18
130260-Thumbnail Image.png
Description
Electricity plays a special role in our lives and life. The dynamics of electrons allow light to flow through a vacuum. The equations of electron dynamics are nearly exact and apply from nuclear particles to stars. These Maxwell equations include a special term, the displacement current (of a vacuum). The

Electricity plays a special role in our lives and life. The dynamics of electrons allow light to flow through a vacuum. The equations of electron dynamics are nearly exact and apply from nuclear particles to stars. These Maxwell equations include a special term, the displacement current (of a vacuum). The displacement current allows electrical signals to propagate through space. Displacement current guarantees that current is exactly conserved from inside atoms to between stars, as long as current is defined as the entire source of the curl of the magnetic field, as Maxwell did.We show that the Bohm formulation of quantum mechanics allows the easy definition of the total current, and its conservation, without the dificulties implicit in the orthodox quantum theory. The orthodox theory neglects the reality of magnitudes, like the currents, during times that they are not being explicitly measured.We show how conservation of current can be derived without mention of the polarization or dielectric properties of matter. We point out that displacement current is handled correctly in electrical engineering by ‘stray capacitances’, although it is rarely discussed explicitly. Matter does not behave as physicists of the 1800’s thought it did. They could only measure on a time scale of seconds and tried to explain dielectric properties and polarization with a single dielectric constant, a real positive number independent of everything. Matter and thus charge moves in enormously complicated ways that cannot be described by a single dielectric constant,when studied on time scales important today for electronic technology and molecular biology. When classical theories could not explain complex charge movements, constants in equations were allowed to vary in solutions of those equations, in a way not justified by mathematics, with predictable consequences. Life occurs in ionic solutions where charge is moved by forces not mentioned or described in the Maxwell equations, like convection and diffusion. These movements and forces produce crucial currents that cannot be described as classical conduction or classical polarization. Derivations of conservation of current involve oversimplified treatments of dielectrics and polarization in nearly every textbook. Because real dielectrics do not behave in that simple way-not even approximately-classical derivations of conservation of current are often distrusted or even ignored. We show that current is conserved inside atoms. We show that current is conserved exactly in any material no matter how complex are the properties of dielectric, polarization, or conduction currents. Electricity has a special role because conservation of current is a universal law.Most models of chemical reactions do not conserve current and need to be changed to do so. On the macroscopic scale of life, conservation of current necessarily links far spread boundaries to each other, correlating inputs and outputs, and thereby creating devices.We suspect that correlations created by displacement current link all scales and allow atoms to control the machines and organisms of life. Conservation of current has a special role in our lives and life, as well as in physics. We believe models, simulations, and computations should conserve current on all scales, as accurately as possible, because physics conserves current that way. We believe models will be much more successful if they conserve current at every level of resolution, the way physics does.We surely need successful models as we try to control macroscopic functions by atomic interventions, in technology, life, and medicine. Maxwell’s displacement current lets us see stars. We hope it will help us see how atoms control life.
Created2017-10-28
130257-Thumbnail Image.png
Description
Fire is one of the earliest and most common tools used by humans to modify the earth surface. Landscapes in the Yucatán Peninsula are composed of a mosaic of old growth subtropical forest, secondary vegetation, grasslands, and agricultural land that represent a well-documented example of anthropogenic intervention, much of which

Fire is one of the earliest and most common tools used by humans to modify the earth surface. Landscapes in the Yucatán Peninsula are composed of a mosaic of old growth subtropical forest, secondary vegetation, grasslands, and agricultural land that represent a well-documented example of anthropogenic intervention, much of which involves the use of fire. This research characterizes land use systems and land cover changes in the Yucatán during the 2000–2010 time period. We used an active fire remotely sensed data time series from the Moderate Resolution Imaging Spectroradiometer (MODIS), in combination with forest loss, and anthrome map sources to (1) establish the association between fire and land use change in the region; and (2) explore links between the spatial and temporal patterns of fire and specific types of land use practices, including within- and between-anthromes variability. A spatial multinomial logit model was constructed using fire, landscape configuration, and a set of commonly used control variables to estimate forest persistence, non-forest persistence, and change. Cross-tabulations and descriptive statistics were used to explore the relationships between fire occurrence, location, and timing with respect to the geography of land use. We also compared fire frequencies within and between anthrome groups using a negative binomial model and Tukey pairwise comparisons. Results show that fire data broadly reproduce the geography and timing of anthropogenic land change. Findings indicate that fire and landscape configuration is useful in explaining forest change and non-forest persistence, especially in fragmented (mosaicked) landscapes. Absence of fire occurrence is related usefully to the persistence of spatially continuous core areas of older growth forest. Fire has a positive relationship with forest to non-forest change and a negative relationship with forest persistence. Fire is also a good indicator to distinguish between anthrome groups (e.g., croplands and villages). Our study suggests that active fire data series are a reasonable proxy for anthropogenic land persistence/change in the context of the Yucatán and are useful to differentiate quantitatively and qualitatively between and within anthromes.
Created2017-09-12
130345-Thumbnail Image.png
Description
Nitrogen (N) and phosphorus (P) are important limiting nutrients for plant production and consumer performance in a variety of ecosystems. As a result, the N:P stoichiometry of herbivores has received increased attention in ecology. However, the mechanisms by which herbivores maintain N:P stoichiometric homeostasis are poorly understood. Here, using a

Nitrogen (N) and phosphorus (P) are important limiting nutrients for plant production and consumer performance in a variety of ecosystems. As a result, the N:P stoichiometry of herbivores has received increased attention in ecology. However, the mechanisms by which herbivores maintain N:P stoichiometric homeostasis are poorly understood. Here, using a field manipulation experiment we show that the grasshopper Oedaleus asiaticus maintains strong N:P stoichiometric homeostasis regardless of whether grasshoppers were reared at low or high density. Grasshoppers maintained homeostasis by increasing P excretion when eating plants with higher P contents. However, while grasshoppers also maintained constant body N contents, we found no changes in N excretion in response to changing plant N content over the range measured. These results suggest that O. asiaticus maintains P homeostasis primarily by changing P absorption and excretion rates, but that other mechanisms may be more important for regulating N homeostasis. Our findings improve our understanding of consumer-driven P recycling and may help in understanding the factors affecting plant-herbivore interactions and ecosystem processes in grasslands.
ContributorsZhang, Zijia (Author) / Elser, James (Author) / Cease, Arianne (Author) / Zhang, Ximei (Author) / Yu, Qiang (Author) / Han, Xingguo (Author) / Zhang, Guangming (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Julie Ann Wrigley Global Institute of Sustainability (Contributor) / School of Sustainability (Contributor)
Created2014-08-04
130333-Thumbnail Image.png
Description
The growth rate hypothesis (GRH) proposes that higher growth rate (the rate of change in biomass per unit biomass, μ) is associated with higher P concentration and lower C∶P and N∶P ratios. However, the applicability of the GRH to vascular plants is not well-studied and few studies have been done

The growth rate hypothesis (GRH) proposes that higher growth rate (the rate of change in biomass per unit biomass, μ) is associated with higher P concentration and lower C∶P and N∶P ratios. However, the applicability of the GRH to vascular plants is not well-studied and few studies have been done on belowground biomass. Here we showed that, for aboveground, belowground and total biomass of three study species, μ was positively correlated with N∶C under N limitation and positively correlated with P∶C under P limitation. However, the N∶P ratio was a unimodal function of μ, increasing for small values of μ, reaching a maximum, and then decreasing. The range of variations in μ was positively correlated with variation in C∶N∶P stoichiometry. Furthermore, μ and C∶N∶P ranges for aboveground biomass were negatively correlated with those for belowground. Our results confirm the well-known association of growth rate with tissue concentration of the limiting nutrient and provide empirical support for recent theoretical formulations.
ContributorsYu, Qiang (Author) / Wu, Honghui (Author) / He, Nianpeng (Author) / Lu, Xiaotao (Author) / Wang, Zhiping (Author) / Elser, James (Author) / Wu, Jianguo (Author) / Han, Xingguo (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Julie Ann Wrigley Global Institute of Sustainability (Contributor) / School of Sustainability (Contributor)
Created2012-03-13
130330-Thumbnail Image.png
Description
Evolving Earth observation and change detection techniques enable the automatic identification of Land Use and Land Cover Change (LULCC) over a large extent from massive amounts of remote sensing data. It at the same time poses a major challenge in effective organization, representation and modeling of such information. This study

Evolving Earth observation and change detection techniques enable the automatic identification of Land Use and Land Cover Change (LULCC) over a large extent from massive amounts of remote sensing data. It at the same time poses a major challenge in effective organization, representation and modeling of such information. This study proposes and implements an integrated computational framework to support the modeling, semantic and spatial reasoning of change information with regard to space, time and topology. We first proposed a conceptual model to formally represent the spatiotemporal variation of change data, which is essential knowledge to support various environmental and social studies, such as deforestation and urbanization studies. Then, a spatial ontology was created to encode these semantic spatiotemporal data in a machine-understandable format. Based on the knowledge defined in the ontology and related reasoning rules, a semantic platform was developed to support the semantic query and change trajectory reasoning of areas with LULCC. This semantic platform is innovative, as it integrates semantic and spatial reasoning into a coherent computational and operational software framework to support automated semantic analysis of time series data that can go beyond LULC datasets. In addition, this system scales well as the amount of data increases, validated by a number of experimental results. This work contributes significantly to both the geospatial Semantic Web and GIScience communities in terms of the establishment of the (web-based) semantic platform for collaborative question answering and decision-making.
Created2016-10-25
130321-Thumbnail Image.png
Description
We have fabricated a high mobility device, composed of a monolayer graphene flake sandwiched between two sheets of hexagonal boron nitride. Conductance fluctuations as functions of a back gate voltage and magnetic field were obtained to check for ergodicity. Non-linear dynamics concepts were used to study the nature of these

We have fabricated a high mobility device, composed of a monolayer graphene flake sandwiched between two sheets of hexagonal boron nitride. Conductance fluctuations as functions of a back gate voltage and magnetic field were obtained to check for ergodicity. Non-linear dynamics concepts were used to study the nature of these fluctuations. The distribution of eigenvalues was estimated from the conductance fluctuations with Gaussian kernels and it indicates that the carrier motion is chaotic at low temperatures. We argue that a two-phase dynamical fluid model best describes the transport in this system and can be used to explain the violation of the so-called ergodic hypothesis found in graphene.
Contributorsda Cunha, C. R. (Author) / Mineharu, M. (Author) / Matsunaga, M. (Author) / Matsumoto, N. (Author) / Chuang, C. (Author) / Ochiai, Y. (Author) / Kim, G.-H. (Author) / Watanabe, K. (Author) / Taniguchi, T. (Author) / Ferry, David (Author) / Aoki, N. (Author) / Ira A. Fulton Schools of Engineering (Contributor) / School of Electrical, Computer and Energy Engineering (Contributor)
Created2016-09-09
130312-Thumbnail Image.png
Description
The unusual physical properties and formation conditions attributed to h-, i-, m-, and n-nanodiamond polymorphs has resulted in their receiving much attention in the materials and planetary science literature. Their identification is based on diffraction features that are absent in ordinary cubic (c-) diamond (space group: Fd-3m). We show, using

The unusual physical properties and formation conditions attributed to h-, i-, m-, and n-nanodiamond polymorphs has resulted in their receiving much attention in the materials and planetary science literature. Their identification is based on diffraction features that are absent in ordinary cubic (c-) diamond (space group: Fd-3m). We show, using ultra-high-resolution transmission electron microscope (HRTEM) images of natural and synthetic nanodiamonds, that the diffraction features attributed to the reported polymorphs are consistent with c-diamond containing abundant defects. Combinations of {113} reflection and <011> rotation twins produce HRTEM images and d-spacings that match those attributed to h-, i-, and m-diamond. The diagnostic features of n-diamond in TEM images can arise from thickness effects of c-diamonds. Our data and interpretations strongly suggest that the reported nanodiamond polymorphs are in fact twinned c-diamond. We also report a new type of twin (<121> rotational), which can give rise to grains with dodecagonal symmetry. Our results show that twins are widespread in diamond nanocrystals. A high density of twins could strongly influence their applications.
ContributorsNemeth, Peter (Author) / Garvie, Laurence (Author) / Buseck, Peter (Author) / College of Liberal Arts and Sciences (Contributor) / School of Earth and Space Exploration (Contributor) / Center for Meteorite Studies (Contributor)
Created2015-12-16