The title “Regents’ Professor” is the highest faculty honor awarded at Arizona State University. It is conferred on ASU faculty who have made pioneering contributions in their areas of expertise, who have achieved a sustained level of distinction, and who enjoy national and international recognition for these accomplishments. This collection contains primarily open access works by ASU Regents' Professors.

Displaying 1 - 7 of 7
Filtering by

Clear all filters

130291-Thumbnail Image.png
Description
pH and fermentable substrates impose selective pressures on gut microbial communities and their metabolisms. We evaluated the relative contributions of pH, alkalinity, and substrate on microbial community structure, metabolism, and functional interactions using triplicate batch cultures started from fecal slurry and incubated with an initial pH of 6.0, 6.5, or

pH and fermentable substrates impose selective pressures on gut microbial communities and their metabolisms. We evaluated the relative contributions of pH, alkalinity, and substrate on microbial community structure, metabolism, and functional interactions using triplicate batch cultures started from fecal slurry and incubated with an initial pH of 6.0, 6.5, or 6.9 and 10 mM glucose, fructose, or cellobiose as the carbon substrate. We analyzed 16S rRNA gene sequences and fermentation products. Microbial diversity was driven by both pH and substrate type. Due to insufficient alkalinity, a drop in pH from 6.0 to ~4.5 clustered pH 6.0 cultures together and distant from pH 6.5 and 6.9 cultures, which experienced only small pH drops. Cellobiose yielded more acidity than alkalinity due to the amount of fermentable carbon, which moved cellobiose pH 6.5 cultures away from other pH 6.5 cultures. The impact of pH on microbial community structure was reflected by fermentative metabolism. Lactate accumulation occurred in pH 6.0 cultures, whereas propionate and acetate accumulations were observed in pH 6.5 and 6.9 cultures and independently from the type of substrate provided. Finally, pH had an impact on the interactions between lactate-producing and -consuming communities. Lactate-producing Streptococcus dominated pH 6.0 cultures, and acetate- and propionate-producing Veillonella, Bacteroides, and Escherichia dominated the cultures started at pH 6.5 and 6.9. Acid inhibition on lactate-consuming species led to lactate accumulation. Our results provide insights into pH-derived changes in fermenting microbiota and metabolisms in the human gut.
Created2017-05-03
130259-Thumbnail Image.png
Description
Background
Syngas fermentation, the bioconversion of CO, CO[subscript 2], and H[subscript 2] to biofuels and chemicals, has undergone considerable optimization for industrial applications. Even more, full-scale plants for ethanol production from syngas fermentation by pure cultures are being built worldwide. The composition of syngas depends on the feedstock gasified and the

Background
Syngas fermentation, the bioconversion of CO, CO[subscript 2], and H[subscript 2] to biofuels and chemicals, has undergone considerable optimization for industrial applications. Even more, full-scale plants for ethanol production from syngas fermentation by pure cultures are being built worldwide. The composition of syngas depends on the feedstock gasified and the gasification conditions. However, it remains unclear how different syngas mixtures affect the metabolism of carboxidotrophs, including the ethanol/acetate ratios. In addition, the potential application of mixed cultures in syngas fermentation and their advantages over pure cultures have not been deeply explored. In this work, the effects of CO[subscript 2] and H[subscript 2] on the CO metabolism by pure and mixed cultures were studied and compared. For this, a CO-enriched mixed culture and two isolated carboxidotrophs were grown with different combinations of syngas components (CO, CO:H[subscript 2], CO:CO[subscript 2], or CO:CO[subscript 2]:H[subscript 2]).
Results
The CO metabolism of the mixed culture was somehow affected by the addition of CO[subscript 2] and/or H[subscript 2], but the pure cultures were more sensitive to changes in gas composition than the mixed culture. CO[subscript 2] inhibited CO oxidation by the Pleomorphomonas-like isolate and decreased the ethanol/acetate ratio by the Acetobacterium-like isolate. H[subscript 2] did not inhibit ethanol or H[subscript 2] production by the Acetobacterium and Pleomorphomonas isolates, respectively, but decreased their CO consumption rates. As part of the mixed culture, these isolates, together with other microorganisms, consumed H[subscript 2] and CO[subscript 2] (along with CO) for all conditions tested and at similar CO consumption rates (2.6 ± 0.6 mmol CO L[superscript −1] day[superscript −1]), while maintaining overall function (acetate production). Providing a continuous supply of CO by membrane diffusion caused the mixed culture to switch from acetate to ethanol production, presumably due to the increased supply of electron donor. In parallel with this change in metabolic function, the structure of the microbial community became dominated by Geosporobacter phylotypes, instead of Acetobacterium and Pleomorphomonas phylotypes.
Conclusions
These results provide evidence for the potential of mixed-culture syngas fermentation, since the CO-enriched mixed culture showed high functional redundancy, was resilient to changes in syngas composition, and was capable of producing acetate or ethanol as main products of CO metabolism.
Created2017-09-16
130346-Thumbnail Image.png
Description
Recent studies indicate the presence of nano-scale titanium dioxide (TiO[subscript 2]) as an additive in human foodstuffs, but a practical protocol to isolate and separate nano-fractions from soluble foodstuffs as a source of material remains elusive. As such, we developed a method for separating the nano and submicron fractions found

Recent studies indicate the presence of nano-scale titanium dioxide (TiO[subscript 2]) as an additive in human foodstuffs, but a practical protocol to isolate and separate nano-fractions from soluble foodstuffs as a source of material remains elusive. As such, we developed a method for separating the nano and submicron fractions found in commercial-grade TiO[subscript 2] (E171) and E171 extracted from soluble foodstuffs and pharmaceutical products (e.g., chewing gum, pain reliever, and allergy medicine). Primary particle analysis of commercial-grade E171 indicated that 54% of particles were nano-sized (i.e., < 100 nm). Isolation and primary particle analysis of five consumer goods intended to be ingested revealed differences in the percent of nano-sized particles from 32%‒58%. Separation and enrichment of nano- and submicron-sized particles from commercial-grade E171 and E171 isolated from foodstuffs and pharmaceuticals was accomplished using rate-zonal centrifugation. Commercial-grade E171 was separated into nano- and submicron-enriched fractions consisting of a nano:submicron fraction of approximately 0.45:1 and 3.2:1, respectively. E171 extracted from gum had nano:submicron fractions of 1.4:1 and 0.19:1 for nano- and submicron-enriched, respectively. We show a difference in particle adhesion to the cell surface, which was found to be dependent on particle size and epithelial orientation. Finally, we provide evidence that E171 particles are not immediately cytotoxic to the Caco-2 human intestinal epithelium model. These data suggest that this separation method is appropriate for studies interested in isolating the nano-sized particle fraction taken directly from consumer products, in order to study separately the effects of nano and submicron particles.
Created2016-10-31
130326-Thumbnail Image.png
Description

Inhibition by ammonium at concentrations above 1000 mgN/L is known to harm the methanogenesis phase of anaerobic digestion. We anaerobically digested swine waste and achieved steady state COD-removal efficiency of around 52% with no fatty-acid or H[subscript 2] accumulation. As the anaerobic microbial community adapted to the gradual increase of total

Inhibition by ammonium at concentrations above 1000 mgN/L is known to harm the methanogenesis phase of anaerobic digestion. We anaerobically digested swine waste and achieved steady state COD-removal efficiency of around 52% with no fatty-acid or H[subscript 2] accumulation. As the anaerobic microbial community adapted to the gradual increase of total ammonia-N (NH[subscript 3]-N) from 890 ± 295 to 2040 ± 30 mg/L, the Bacterial and Archaeal communities became less diverse. Phylotypes most closely related to hydrogenotrophic Methanoculleus (36.4%) and Methanobrevibacter (11.6%), along with acetoclastic Methanosaeta (29.3%), became the most abundant Archaeal sequences during acclimation. This was accompanied by a sharp increase in the relative abundances of phylotypes most closely related to acetogens and fatty-acid producers (Clostridium, Coprococcus, and Sphaerochaeta) and syntrophic fatty-acid Bacteria (Syntrophomonas, Clostridium, Clostridiaceae species, and Cloacamonaceae species) that have metabolic capabilities for butyrate and propionate fermentation, as well as for reverse acetogenesis. Our results provide evidence countering a prevailing theory that acetoclastic methanogens are selectively inhibited when the total ammonia-N concentration is greater than ~1000 mgN/L. Instead, acetoclastic and hydrogenotrophic methanogens coexisted in the presence of total ammonia-N of ~2000 mgN/L by establishing syntrophic relationships with fatty-acid fermenters, as well as homoacetogens able to carry out forward and reverse acetogenesis.

Created2016-08-11
130399-Thumbnail Image.png
Description
Sustainable production of microalgae for biofuel requires efficient phosphorus (P) utilization, which is a limited resource and vital for global food security. This research tracks the fate of P through biofuel production and investigates P recovery from the biomass using the cyanobacterium Synechocystis sp. PCC 6803. Our results show that

Sustainable production of microalgae for biofuel requires efficient phosphorus (P) utilization, which is a limited resource and vital for global food security. This research tracks the fate of P through biofuel production and investigates P recovery from the biomass using the cyanobacterium Synechocystis sp. PCC 6803. Our results show that Synechocystis contained 1.4% P dry weight. After crude lipids were extracted (e.g., for biofuel processing), 92% of the intracellular P remained in the residual biomass, indicating phospholipids comprised only a small percentage of cellular P. We estimate a majority of the P is primarily associated with nucleic acids. Advanced oxidation using hydrogen peroxide and microwave heating released 92% of the cellular P into orthophosphate. We then recovered the orthophosphate from the digestion matrix using two different types of anion exchange resins. One resin impregnated with iron nanoparticles adsorbed 98% of the influent P through 20 bed volumes, but only released 23% during regeneration. A strong-base anion exchange resin adsorbed 87% of the influent P through 20 bed volumes and released 50% of it upon regeneration. This recovered P subsequently supported growth of Synechocystis. This proof-of-concept recovery process reduced P demand of biofuel microalgae by 54%.
Created2015-03-01
130361-Thumbnail Image.png
Description
Background
Neighborhood environment studies of physical activity (PA) have been mainly single-country focused. The International Prevalence Study (IPS) presented a rare opportunity to examine neighborhood features across countries. The purpose of this analysis was to: 1) detect international neighborhood typologies based on participants’ response patterns to an environment survey and 2)

Background
Neighborhood environment studies of physical activity (PA) have been mainly single-country focused. The International Prevalence Study (IPS) presented a rare opportunity to examine neighborhood features across countries. The purpose of this analysis was to: 1) detect international neighborhood typologies based on participants’ response patterns to an environment survey and 2) to estimate associations between neighborhood environment patterns and PA.
Methods
A Latent Class Analysis (LCA) was conducted on pooled IPS adults (N=11,541) aged 18 to 64 years old (mean=37.5 ±12.8 yrs; 55.6% women) from 11 countries including Belgium, Brazil, Canada, Colombia, Hong Kong, Japan, Lithuania, New Zealand, Norway, Sweden, and the U.S. This subset used the Physical Activity Neighborhood Environment Survey (PANES) that briefly assessed 7 attributes within 10–15 minutes walk of participants’ residences, including residential density, access to shops/services, recreational facilities, public transit facilities, presence of sidewalks and bike paths, and personal safety. LCA derived meaningful subgroups from participants’ response patterns to PANES items, and participants were assigned to neighborhood types. The validated short-form International Physical Activity Questionnaire (IPAQ) measured likelihood of meeting the 150 minutes/week PA guideline. To validate derived classes, meeting the guideline either by walking or total PA was regressed on neighborhood types using a weighted generalized linear regression model, adjusting for gender, age and country.
Results
A 5-subgroup solution fitted the dataset and was interpretable. Neighborhood types were labeled, “Overall Activity Supportive (52% of sample)”, “High Walkable and Unsafe with Few Recreation Facilities (16%)”, “Safe with Active Transport Facilities (12%)”, “Transit and Shops Dense with Few Amenities (15%)”, and “Safe but Activity Unsupportive (5%)”. Country representation differed by type (e.g., U.S. disproportionally represented “Safe but Activity Unsupportive”). Compared to the Safe but Activity Unsupportive, two types showed greater odds of meeting PA guideline for walking outcome (High Walkable and Unsafe with Few Recreation Facilities, OR= 2.26 (95% CI 1.18-4.31); Overall Activity Supportive, OR= 1.90 (95% CI 1.13-3.21). Significant but smaller odds ratios were also found for total PA.
Conclusions
Meaningful neighborhood patterns generalized across countries and explained practical differences in PA. These observational results support WHO/UN recommendations for programs and policies targeted to improve features of the neighborhood environment for PA.
ContributorsAdams, Marc (Author) / Ding, Ding (Author) / Sallis, James F. (Author) / Bowles, Heather R. (Author) / Ainsworth, Barbara (Author) / Bergman, Patrick (Author) / Bull, Fiona C. (Author) / Carr, Harriette (Author) / Craig, Cora L. (Author) / De Bourdeaudhuij, Ilse (Author) / Fernando Gomez, Luis (Author) / Hagstromer, Maria (Author) / Klasson-Heggebo, Lena (Author) / Inoue, Shigeru (Author) / Lefevre, Johan (Author) / Macfarlane, Duncan J. (Author) / Matsudo, Sandra (Author) / Matsudo, Victor (Author) / McLean, Grant (Author) / Murase, Norio (Author) / Sjostrom, Michael (Author) / Tomten, Heidi (Author) / Volbekiene, Vida (Author) / Bauman, Adrian (Author) / College of Health Solutions (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2013-03-07
130359-Thumbnail Image.png
Description
Background
Increasing empirical evidence supports associations between neighborhood environments and physical activity. However, since most studies were conducted in a single country, particularly western countries, the generalizability of associations in an international setting is not well understood. The current study examined whether associations between perceived attributes of neighborhood environments and physical

Background
Increasing empirical evidence supports associations between neighborhood environments and physical activity. However, since most studies were conducted in a single country, particularly western countries, the generalizability of associations in an international setting is not well understood. The current study examined whether associations between perceived attributes of neighborhood environments and physical activity differed by country.
Methods
Population representative samples from 11 countries on five continents were surveyed using comparable methodologies and measurement instruments. Neighborhood environment × country interactions were tested in logistic regression models with meeting physical activity recommendations as the outcome, adjusted for demographic characteristics. Country-specific associations were reported.
Results
Significant neighborhood environment attribute × country interactions implied some differences across countries in the association of each neighborhood attribute with meeting physical activity recommendations. Across the 11 countries, land-use mix and sidewalks had the most consistent associations with physical activity. Access to public transit, bicycle facilities, and low-cost recreation facilities had some associations with physical activity, but with less consistency across countries. There was little evidence supporting the associations of residential density and crime-related safety with physical activity in most countries.
Conclusion
There is evidence of generalizability for the associations of land use mix, and presence of sidewalks with physical activity. Associations of other neighborhood characteristics with physical activity tended to differ by country. Future studies should include objective measures of neighborhood environments, compare psychometric properties of reports across countries, and use better specified models to further understand the similarities and differences in associations across countries.
ContributorsDing, Ding (Author) / Adams, Marc (Author) / Sallis, James F. (Author) / Norman, Gregory J. (Author) / Hovell, Melbourn F. (Author) / Chambers, Christina D. (Author) / Hofstetter, C. Richard (Author) / Bowles, Heather R. (Author) / Hagstromer, Maria (Author) / Craig, Cora L. (Author) / Fernando Gomez, Luis (Author) / De Bourdeaudhuij, Ilse (Author) / Macfarlane, Duncan J. (Author) / Ainsworth, Barbara (Author) / Bergman, Patrick (Author) / Bull, Fiona C. (Author) / Carr, Harriette (Author) / Klasson-Heggebo, Lena (Author) / Inoue, Shigeru (Author) / Murase, Norio (Author) / Matsudo, Sandra (Author) / Matsudo, Victor (Author) / McLean, Grant (Author) / Sjostrom, Michael (Author) / Tomten, Heidi (Author) / Lefevre, Johan (Author) / Volbekiene, Vida (Author) / Bauman, Adrian E. (Author) / College of Health Solutions (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2013-05-14