The title “Regents’ Professor” is the highest faculty honor awarded at Arizona State University. It is conferred on ASU faculty who have made pioneering contributions in their areas of expertise, who have achieved a sustained level of distinction, and who enjoy national and international recognition for these accomplishments. This collection contains primarily open access works by ASU Regents' Professors.

Displaying 1 - 9 of 9
Filtering by

Clear all filters

130297-Thumbnail Image.png
Description

Women with breast cancer often experience weight gain during and after treatment, significantly increasing risk for recurrence as well as all-cause mortality. Based on a growing body of evidence, meditative movement practices may be effective for weight management. First, we describe the effects of stress on factors associated with weight

Women with breast cancer often experience weight gain during and after treatment, significantly increasing risk for recurrence as well as all-cause mortality. Based on a growing body of evidence, meditative movement practices may be effective for weight management. First, we describe the effects of stress on factors associated with weight gain for breast cancer survivors. Then, a model is proposed that utilizes existing evidence to suggest how meditative movement supports behavioral, psychological, and neurohormonal changes that may explain weight loss. Application of the model suggests how a novel “mindful-body-wisdom” approach may work to help reduce weight for this at-risk group.

Created2014-12-24
130295-Thumbnail Image.png
Description

Cancer is sometimes depicted as a reversion to single cell behavior in cells adapted to live in a multicellular assembly. If this is the case, one would expect that mutation in cancer disrupts functional mechanisms that suppress cell-level traits detrimental to multicellularity. Such mechanisms should have evolved with or after

Cancer is sometimes depicted as a reversion to single cell behavior in cells adapted to live in a multicellular assembly. If this is the case, one would expect that mutation in cancer disrupts functional mechanisms that suppress cell-level traits detrimental to multicellularity. Such mechanisms should have evolved with or after the emergence of multicellularity. This leads to two related, but distinct hypotheses: 1) Somatic mutations in cancer will occur in genes that are younger than the emergence of multicellularity (1000 million years [MY]); and 2) genes that are frequently mutated in cancer and whose mutations are functionally important for the emergence of the cancer phenotype evolved within the past 1000 million years, and thus would exhibit an age distribution that is skewed to younger genes. In order to investigate these hypotheses we estimated the evolutionary ages of all human genes and then studied the probability of mutation and their biological function in relation to their age and genomic location for both normal germline and cancer contexts.

We observed that under a model of uniform random mutation across the genome, controlled for gene size, genes less than 500 MY were more frequently mutated in both cases. Paradoxically, causal genes, defined in the COSMIC Cancer Gene Census, were depleted in this age group. When we used functional enrichment analysis to explain this unexpected result we discovered that COSMIC genes with recessive disease phenotypes were enriched for DNA repair and cell cycle control. The non-mutated genes in these pathways are orthologous to those underlying stress-induced mutation in bacteria, which results in the clustering of single nucleotide variations. COSMIC genes were less common in regions where the probability of observing mutational clusters is high, although they are approximately 2-fold more likely to harbor mutational clusters compared to other human genes. Our results suggest this ancient mutational response to stress that evolved among prokaryotes was co-opted to maintain diversity in the germline and immune system, while the original phenotype is restored in cancer. Reversion to a stress-induced mutational response is a hallmark of cancer that allows for effectively searching “protected” genome space where genes causally implicated in cancer are located and underlies the high adaptive potential and concomitant therapeutic resistance that is characteristic of cancer.

Created2017-04-25
130294-Thumbnail Image.png
Description
Open-ended evolution (OEE) is relevant to a variety of biological, artificial and technological systems, but has been challenging to reproduce in silico. Most theoretical efforts focus on key aspects of open-ended evolution as it appears in biology. We recast the problem as a more general one in dynamical systems theory,

Open-ended evolution (OEE) is relevant to a variety of biological, artificial and technological systems, but has been challenging to reproduce in silico. Most theoretical efforts focus on key aspects of open-ended evolution as it appears in biology. We recast the problem as a more general one in dynamical systems theory, providing simple criteria for open-ended evolution based on two hallmark features: unbounded evolution and innovation. We define unbounded evolution as patterns that are non-repeating within the expected Poincare recurrence time of an isolated system, and innovation as trajectories not observed in isolated systems. As a case study, we implement novel variants of cellular automata (CA) where the update rules are allowed to vary with time in three alternative ways. Each is capable of generating conditions for open-ended evolution, but vary in their ability to do so. We find that state-dependent dynamics, regarded as a hallmark of life, statistically out-performs other candidate mechanisms, and is the only mechanism to produce open-ended evolution in a scalable manner, essential to the notion of ongoing evolution. This analysis suggests a new framework for unifying mechanisms for generating OEE with features distinctive to life and its artifacts, with broad applicability to biological and artificial systems.
Created2017-04-20
130252-Thumbnail Image.png
Description
A major conceptual step forward in understanding the logical architecture of living systems was advanced by von Neumann with his universal constructor, a physical device capable of self-reproduction. A necessary condition for a universal constructor to exist is that the laws of physics permit physical universality, such that any transformation

A major conceptual step forward in understanding the logical architecture of living systems was advanced by von Neumann with his universal constructor, a physical device capable of self-reproduction. A necessary condition for a universal constructor to exist is that the laws of physics permit physical universality, such that any transformation (consistent with the laws of physics and availability of resources) can be caused to occur. While physical universality has been demonstrated in simple cellular automata models, so far these have not displayed a requisite feature of life—namely open-ended evolution—the explanation of which was also a prime motivator in von Neumann’s formulation of a universal constructor. Current examples of physical universality rely on reversible dynamical laws, whereas it is well-known that living processes are dissipative. Here we show that physical universality and open-ended dynamics should both be possible in irreversible dynamical systems if one entertains the possibility of state-dependent laws. We demonstrate with simple toy models how the accessibility of state space can yield open-ended trajectories, defined as trajectories that do not repeat within the expected Poincaré recurrence time and are not reproducible by an isolated system. We discuss implications for physical universality, or an approximation to it, as a foundational framework for developing a physics for life.
Created2017-09-01
130332-Thumbnail Image.png
Description
Despite their low cost and high nutrient density, the contribution of eggs to nutrient intake and dietary quality among Mexican-American postpartum women has not been evaluated. Nutrient intake and dietary quality, as assessed by the Healthy Eating Index 2010 (HEI-2010), were measured in habitually sedentary overweight/obese (body mass index (BMI)

Despite their low cost and high nutrient density, the contribution of eggs to nutrient intake and dietary quality among Mexican-American postpartum women has not been evaluated. Nutrient intake and dietary quality, as assessed by the Healthy Eating Index 2010 (HEI-2010), were measured in habitually sedentary overweight/obese (body mass index (BMI) = 29.7 ± 3.5 kg/m[superscript 2]) Mexican-American postpartum women (28 ± 6 years) and compared between egg consumers (n = 82; any egg intake reported in at least one of three 24-h dietary recalls) and non-consumers (n = 57). Egg consumers had greater intake of energy (+808 kJ (193 kcal) or 14%; p = 0.033), protein (+9 g or 17%; p = 0.031), total fat (+9 g or 19%; p = 0.039), monounsaturated fat (+4 g or 24%; p = 0.020), and several micronutrients than non-consumers. Regarding HEI-2010 scores, egg consumers had a greater total protein foods score than non-consumers (4.7 ± 0.7 vs. 4.3 ± 1.0; p = 0.004), and trends for greater total fruit (2.4 ± 1.8 vs. 1.9 ± 1.7; p = 0.070) and the total composite HEI-2010 score (56.4 ± 12.6 vs. 52.3 ± 14.4; p = 0.082). Findings suggest that egg intake could contribute to greater nutrient intake and improved dietary quality among postpartum Mexican-American women. Because of greater energy intake among egg consumers, recommendations for overweight/obese individuals should include avoiding excessive energy intake and incorporating eggs to a nutrient-dense, fiber-rich dietary pattern.
Created2015-10-02
130369-Thumbnail Image.png
Description

This paper discusses the properties of cancer cells from a new perspective based on an analogy with phase transitions in physical systems. Similarities in terms of instabilities and attractor states are outlined and differences discussed. While physical phase transitions typically occur at or near thermodynamic equilibrium, a normal-to-cancer (NTC) transition

This paper discusses the properties of cancer cells from a new perspective based on an analogy with phase transitions in physical systems. Similarities in terms of instabilities and attractor states are outlined and differences discussed. While physical phase transitions typically occur at or near thermodynamic equilibrium, a normal-to-cancer (NTC) transition is a dynamical non-equilibrium phenomenon, which depends on both metabolic energy supply and local physiological conditions. A number of implications for preventative and therapeutic strategies are outlined.

Created2011-08-25
130368-Thumbnail Image.png
Description
Background
Weight gain during the childbearing years and failure to lose pregnancy weight after birth contribute to the development of obesity in postpartum Latinas.
Methods
Madres para la Salud [Mothers for Health] was a 12-month, randomized controlled trial exploring a social support intervention with moderate-intensity physical activity (PA) seeking to effect changes in

Background
Weight gain during the childbearing years and failure to lose pregnancy weight after birth contribute to the development of obesity in postpartum Latinas.
Methods
Madres para la Salud [Mothers for Health] was a 12-month, randomized controlled trial exploring a social support intervention with moderate-intensity physical activity (PA) seeking to effect changes in body fat, fat tissue inflammation, and depression symptoms in sedentary postpartum Latinas. This report describes the efficacy of the Madres intervention.
Results
The results show that while social support increased during the active intervention delivery, it declined to pre-intervention levels by the end of the intervention. There were significant achievements in aerobic and total steps across the 12 months of the intervention, and declines in body adiposity assessed with bioelectric impedance.
Conclusions
Social support from family and friends mediated increases in aerobic PA resulting in decrease in percent body fat.
Created2014-09-19
130354-Thumbnail Image.png
Description
Background
Mexican Americans are the largest minority group in the US and suffer disproportionate rates of diseases related to the lack of physical activity (PA). Since many of these Mexican Americans are Spanish-speaking, it is important to validate a Spanish language physical activity assessment tool that can be used in epidemiology

Background
Mexican Americans are the largest minority group in the US and suffer disproportionate rates of diseases related to the lack of physical activity (PA). Since many of these Mexican Americans are Spanish-speaking, it is important to validate a Spanish language physical activity assessment tool that can be used in epidemiology as well as clinical practice. This study explored the utility of two Spanish translated physical activity questionnaires, the Stanford Brief Activity Survey (SBAS) and the Rapid Assessment of Physical Activity (RAPA), for use among Spanish-speaking Mexican Americans.
Methods
Thirty-four participants (13 M, 21 F; 37.6 ± 9.5 y) completed each of the two PA surveys twice, one week apart. During that week 31 participants also wore an ActiGraph GT1M accelerometer for 7 days to objectively measure PA. Minutes of moderate and vigorous PA (MVPA) were determined from the accelerometer data using Freedson and Matthews cut points.
Results
Validity, determined by Spearman correlation coefficients between questionnaire scores and minutes of ActiGraph measured MVPA were 0.38 and 0.45 for the SBAS and RAPA, respectively. Test-retest reliability was 0.61 for the SBAS and 0.65 for the RAPA. Sensitivity and specificity were 0.60 and 0.47 for the SBAS, and 0.73 and 0.75 for the RAPA. Participants who were classified as meeting the 2008 National Physical Activity Guidelines by the RAPA engaged in significantly (p < 0.05) more minutes of MVPA than those who were not, while there were no significant differences in minutes of MVPA classified by the SBAS.
Conclusions
The SBAS and the RAPA are both reasonably valid measures for quickly assessing PA and determining compliance to the PA guidelines in Spanish-speaking Mexican Americans. Although the two questionnaires had comparable reliability, the RAPA was better able to distinguish between those who met and did not meet National PA Guidelines.
ContributorsVega Lopez, Sonia (Author) / Chavez, Adrian (Author) / Farr, Kristin (Author) / Ainsworth, Barbara (Author) / College of Health Solutions (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2014-01-13
130432-Thumbnail Image.png
Description
Quantum weak measurements with states both pre- and post-selected offer a window into a hitherto neglected sector of quantum mechanics. A class of such systems involves time dependent evolution with transitions possible. In this paper we explore two very simple systems in this class. The first is a toy model

Quantum weak measurements with states both pre- and post-selected offer a window into a hitherto neglected sector of quantum mechanics. A class of such systems involves time dependent evolution with transitions possible. In this paper we explore two very simple systems in this class. The first is a toy model representing the decay of an excited atom. The second is the tunneling of a particle through a barrier. The post-selection criteria are chosen as follows: at the final time, the atom remains in its initial excited state for the first example and the particle remains behind the barrier for the second. We then ask what weak values are predicted in the physical environment of the atom (to which no net energy has been transferred) and in the region beyond the barrier (to which the particle has not tunneled). Thus, just as the dog that didn't bark in Arthur Conan Doyle's story Silver Blaze gave Sherlock Holmes meaningful information about the dog's non-canine environment, here we probe whether the particle that has not decayed or has not tunneled can provide measurable information about physical changes in the environment. Previous work suggests that very large weak values might arise in these regions for long durations between pre- and post-selection times. Our calculations reveal some distinct differences between the two model systems.
Created2014-06-13