The title “Regents’ Professor” is the highest faculty honor awarded at Arizona State University. It is conferred on ASU faculty who have made pioneering contributions in their areas of expertise, who have achieved a sustained level of distinction, and who enjoy national and international recognition for these accomplishments. This collection contains primarily open access works by ASU Regents' Professors.

Displaying 1 - 7 of 7
Filtering by

Clear all filters

130296-Thumbnail Image.png
Description
As I sat writing this ‘personal reflections’ manuscript in the spring of 2015, I was seeing press reports related to the use of tobacco to make an Ebola therapeutic called ZMapp. For several months newspaper articles, radio shows and hour-long TV documentaries have given the public unprecedented exposure to the

As I sat writing this ‘personal reflections’ manuscript in the spring of 2015, I was seeing press reports related to the use of tobacco to make an Ebola therapeutic called ZMapp. For several months newspaper articles, radio shows and hour-long TV documentaries have given the public unprecedented exposure to the fact that ‘plant-made pharmaceuticals’ (PMP) can be life-saving drugs. I have been asked by many nonspecialists – why tobacco? How can this work? After spending over twenty years doing research in this field and many, many hours in public policy meetings promoting PMPs as an important tool of public health, I do not tire of hearing the same questions. Although there is an increasing pipeline of new protein drugs that will come from plants for both human and animal health, the general public has little knowledge of these specialized tools and therefore limited support for the field. ZMapp has given us free advertising on an international scale that I could never have anticipated.
Created2015-09-08
130284-Thumbnail Image.png
Description
CTB-MPR is a fusion protein between the B subunit of cholera toxin (CTB) and the membrane-proximal region of gp41 (MPR), the transmembrane envelope protein of Human immunodeficiency virus 1 (HIV-1), and has previously been shown to induce the production of anti-HIV-1 antibodies with antiviral functions. To further improve the design

CTB-MPR is a fusion protein between the B subunit of cholera toxin (CTB) and the membrane-proximal region of gp41 (MPR), the transmembrane envelope protein of Human immunodeficiency virus 1 (HIV-1), and has previously been shown to induce the production of anti-HIV-1 antibodies with antiviral functions. To further improve the design of this candidate vaccine, X-ray crystallography experiments were performed to obtain structural information about this fusion protein. Several variants of CTB-MPR were designed, constructed and recombinantly expressed in Escherichia coli. The first variant contained a flexible GPGP linker between CTB and MPR, and yielded crystals that diffracted to a resolution of 2.3 Å, but only the CTB region was detected in the electron-density map. A second variant, in which the CTB was directly attached to MPR, was shown to destabilize pentamer formation. A third construct containing a polyalanine linker between CTB and MPR proved to stabilize the pentameric form of the protein during purification. The purification procedure was shown to produce a homogeneously pure and monodisperse sample for crystallization. Initial crystallization experiments led to pseudo-crystals which were ordered in only two dimensions and were disordered in the third dimension. Nanocrystals obtained using the same precipitant showed promising X-ray diffraction to 5 Å resolution in femtosecond nanocrystallography experiments at the Linac Coherent Light Source at the SLAC National Accelerator Laboratory. The results demonstrate the utility of femtosecond X-ray crystallography to enable structural analysis based on nano/microcrystals of a protein for which no macroscopic crystals ordered in three dimensions have been observed before.
ContributorsLee, Ho-Hsien (Author) / Cherni, Irene (Author) / Yu, HongQi (Author) / Fromme, Raimund (Author) / Doran, Jeffrey (Author) / Grotjohann, Ingo (Author) / Mittman, Michele (Author) / Basu, Shibom (Author) / Deb, Arpan (Author) / Dorner, Katerina (Author) / Aquila, Andrew (Author) / Barty, Anton (Author) / Boutet, Sebastien (Author) / Chapman, Henry N. (Author) / Doak, R. Bruce (Author) / Hunter, Mark (Author) / James, Daniel (Author) / Kirian, Richard (Author) / Kupitz, Christopher (Author) / Lawrence, Robert (Author) / Liu, Haiguang (Author) / Nass, Karol (Author) / Schlichting, Ilme (Author) / Schmidt, Kevin (Author) / Seibert, M. Marvin (Author) / Shoeman, Robert L. (Author) / Spence, John (Author) / Stellato, Francesco (Author) / Weierstall, Uwe (Author) / Williams, Garth J. (Author) / Yoon, Chun Hong (Author) / Wang, Dingjie (Author) / Zatsepin, Nadia (Author) / Hogue, Brenda (Author) / Matoba, Nobuyuki (Author) / Fromme, Petra (Author) / Mor, Tsafrir (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Department of Chemistry and Biochemistry (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Biodesign Institute (Contributor) / Infectious Diseases and Vaccinology (Contributor) / Department of Physics (Contributor)
Created2014-08-20
130274-Thumbnail Image.png
Description
Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with

Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65–70 nm, which is considerably smaller than the previously reported ~600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. The data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency.
ContributorsReddy, Hemanth K. N. (Author) / Yoon, Chun Hong (Author) / Aquila, Andrew (Author) / Awel, Salah (Author) / Ayyer, Kartik (Author) / Barty, Anton (Author) / Berntsen, Peter (Author) / Bielecki, Johan (Author) / Bobkov, Sergey (Author) / Bucher, Maximilian (Author) / Carini, Gabriella A. (Author) / Carron, Sebastian (Author) / Chapman, Henry (Author) / Daurer, Benedikt (Author) / DeMirci, Hasan (Author) / Ekeberg, Tomas (Author) / Fromme, Petra (Author) / Hajdu, Janos (Author) / Hanke, Max Felix (Author) / Hart, Philip (Author) / Hogue, Brenda (Author) / Hasseinizadeh, Ahmad (Author) / Kim, Yoonhee (Author) / Kirian, Richard (Author) / Kurta, Ruslan P. (Author) / Larsson, Daniel S. D. (Author) / Loh, N. Duane (Author) / Maia, Filipe R. N. C. (Author) / Mancuso, Adrian P. (Author) / Muhlig, Kerstin (Author) / Munke, Anna (Author) / Nam, Daewoong (Author) / Nettelblad, Carl (Author) / Ourmazd, Abbas (Author) / Rose, Max (Author) / Schwander, Peter (Author) / Seibert, Marvin (Author) / Sellberg, Jonas A. (Author) / Song, Changyong (Author) / Spence, John (Author) / Svenda, Martin (Author) / van der Schot, Gijs (Author) / Vartanyants, Ivan A. (Author) / Williams, Garth J. (Author) / Xavier, P. Lourdu (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Department of Physics (Contributor)
Created2017-06-27
130268-Thumbnail Image.png
Description
Purpose: To evaluate a new method of measuring ocular exposure in the context of a natural blink pattern through analysis of the variables tear film breakup time (TFBUT), interblink interval (IBI), and tear film breakup area (BUA).
Methods: The traditional methodology (Forced-Stare [FS]) measures TFBUT and IBI separately. TFBUT is measured

Purpose: To evaluate a new method of measuring ocular exposure in the context of a natural blink pattern through analysis of the variables tear film breakup time (TFBUT), interblink interval (IBI), and tear film breakup area (BUA).
Methods: The traditional methodology (Forced-Stare [FS]) measures TFBUT and IBI separately. TFBUT is measured under forced-stare conditions by an examiner using a stopwatch, while IBI is measured as the subject watches television. The new methodology (video capture manual analysis [VCMA]) involves retrospective analysis of video data of fluorescein-stained eyes taken through a slit lamp while the subject watches television, and provides TFBUT and BUA for each IBI during the 1-minute video under natural blink conditions. The FS and VCMA methods were directly compared in the same set of dry-eye subjects. The VCMA method was evaluated for the ability to discriminate between dry-eye subjects and normal subjects. The VCMA method was further evaluated in the dry eye subjects for the ability to detect a treatment effect before, and 10 minutes after, bilateral instillation of an artificial tear solution.
Results: Ten normal subjects and 17 dry-eye subjects were studied. In the dry-eye subjects, the two methods differed with respect to mean TFBUTs (5.82 seconds, FS; 3.98 seconds, VCMA; P = 0.002). The FS variables alone (TFBUT, IBI) were not able to successfully distinguish between the dry-eye and normal subjects, whereas the additional VCMA variables, both derived and observed (BUA, BUA/IBI, breakup rate), were able to successfully distinguish between the dry-eye and normal subjects in a statistically significant fashion. TFBUT (P = 0.034) and BUA/IBI (P = 0.001) were able to distinguish the treatment effect of artificial tears in dry-eye subjects.
Conclusion: The VCMA methodology provides a clinically relevant analysis of tear film stability measured in the context of a natural blink pattern.
Created2011-09-21
130267-Thumbnail Image.png
Description
Purpose: To investigate use of an improved ocular tear film analysis protocol (OPI 2.0) in the Controlled Adverse Environment (CAE[superscript SM]) model of dry eye disease, and to examine the utility of new metrics in the identification of subpopulations of dry eye patients.
Methods: Thirty-three dry eye subjects completed a single-center,

Purpose: To investigate use of an improved ocular tear film analysis protocol (OPI 2.0) in the Controlled Adverse Environment (CAE[superscript SM]) model of dry eye disease, and to examine the utility of new metrics in the identification of subpopulations of dry eye patients.
Methods: Thirty-three dry eye subjects completed a single-center, single-visit, pilot CAE study. The primary endpoint was mean break-up area (MBA) as assessed by the OPI 2.0 system. Secondary endpoints included corneal fluorescein staining, tear film break-up time, and OPI 2.0 system measurements. Subjects were also asked to rate their ocular discomfort throughout the CAE. Dry eye endpoints were measured at baseline, immediately following a 90-minute CAE exposure, and again 30 minutes after exposure.
Results: The post-CAE measurements of MBA showed a statistically significant decrease from the baseline measurements. The decrease was relatively specific to those patients with moderate to severe dry eye, as measured by baseline MBA. Secondary endpoints including palpebral fissure size, corneal staining, and redness, also showed significant changes when pre- and post-CAE measurements were compared. A correlation analysis identified specific associations between MBA, blink rate, and palpebral fissure size. Comparison of MBA responses allowed us to identify subpopulations of subjects who exhibited different compensatory mechanisms in response to CAE challenge. Of note, none of the measures of tear film break-up time showed statistically significant changes or correlations in pre-, versus post-CAE measures.
Conclusion: This pilot study confirms that the tear film metric MBA can detect changes in the ocular surface induced by a CAE, and that these changes are correlated with other, established measures of dry eye disease. The observed decrease in MBA following CAE exposure demonstrates that compensatory mechanisms are initiated during the CAE exposure, and that this compensation may provide the means to identify and characterize clinically relevant subpopulations of dry eye patients.
Created2012-11-12
130320-Thumbnail Image.png
Description

X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a

X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a differently shaped palladium shell. Scattered intensities were observed up to about 7 nm resolution. Analysis of the scattering patterns revealed the size distribution of the samples, which is consistent with that obtained from direct real-space imaging by electron microscopy. Scattering patterns resulting from single particles were selected and compiled into a dataset which can be valuable for algorithm developments in single particle scattering research.

ContributorsLi, Xuanxuan (Author) / Chiu, Chun-Ya (Author) / Wang, Hsiang-Ju (Author) / Kassemeyer, Stephan (Author) / Botha, Sabine (Author) / Shoeman, Robert L. (Author) / Lawrence, Robert (Author) / Kupitz, Christopher (Author) / Kirian, Richard (Author) / James, Daniel (Author) / Wang, Dingjie (Author) / Nelson, Garrett (Author) / Messerschmidt, Marc (Author) / Boutet, Sebastien (Author) / Williams, Garth J. (Author) / Hartman, Elisabeth (Author) / Jafarpour, Aliakbar (Author) / Foucar, Lutz M. (Author) / Barty, Anton (Author) / Chapman, Henry (Author) / Liang, Mengning (Author) / Menzel, Andreas (Author) / Wang, Fenglin (Author) / Basu, Shibom (Author) / Fromme, Raimund (Author) / Doak, R. Bruce (Author) / Fromme, Petra (Author) / Weierstall, Uwe (Author) / Huang, Michael H. (Author) / Spence, John (Author) / Schlichting, Ilme (Author) / Hogue, Brenda (Author) / Liu, Haiguang (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / Department of Physics (Contributor) / School of Life Sciences (Contributor)
Created2017-04-11
130351-Thumbnail Image.png
Description

Viral protein U (Vpu) is a type-III integral membrane protein encoded by Human Immunodeficiency Virus-1 (HIV- 1). It is expressed in infected host cells and plays several roles in viral progeny escape from infected cells, including down-regulation of CD4 receptors. But key structure/function questions remain regarding the mechanisms by which

Viral protein U (Vpu) is a type-III integral membrane protein encoded by Human Immunodeficiency Virus-1 (HIV- 1). It is expressed in infected host cells and plays several roles in viral progeny escape from infected cells, including down-regulation of CD4 receptors. But key structure/function questions remain regarding the mechanisms by which the Vpu protein contributes to HIV-1 pathogenesis. Here we describe expression of Vpu in bacteria, its purification and characterization. We report the successful expression of PelB-Vpu in Escherichia coli using the leader peptide pectate lyase B (PelB) from Erwinia carotovora. The protein was detergent extractable and could be isolated in a very pure form. We demonstrate that the PelB signal peptide successfully targets Vpu to the cell membranes and inserts it as a type I membrane protein. PelB-Vpu was biophysically characterized by circular dichroism and dynamic light scattering experiments and was shown to be an excellent candidate for elucidating structural models.

ContributorsDeb, Arpan (Author) / Johnson, William (Author) / Kline, Alexander (Author) / Scott, Boston (Author) / Meador, Lydia (Author) / Srinivas, Dustin (Author) / Martin Garcia, Jose Manuel (Author) / Dorner, Katerina (Author) / Borges, Chad (Author) / Misra, Rajeev (Author) / Hogue, Brenda (Author) / Fromme, Petra (Author) / Mor, Tsafrir (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Biodesign Institute (Contributor) / School of Molecular Sciences (Contributor) / Applied Structural Discovery (Contributor) / Personalized Diagnostics (Contributor)
Created2017-02-22