This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 29
Filtering by

Clear all filters

Description

Background: An accurate method that can diagnose and predict lupus and its neuropsychiatric manifestations is essential since currently there are no reliable methods. Autoantibodies to a varied panel of antigens in the body are characteristic of lupus. In this study we investigated whether serum autoantibody binding patterns on random-sequence peptide

Background: An accurate method that can diagnose and predict lupus and its neuropsychiatric manifestations is essential since currently there are no reliable methods. Autoantibodies to a varied panel of antigens in the body are characteristic of lupus. In this study we investigated whether serum autoantibody binding patterns on random-sequence peptide microarrays (immunosignaturing) can be used for diagnosing and predicting the onset of lupus and its central nervous system (CNS) manifestations. We also tested the techniques for identifying potentially pathogenic autoantibodies in CNS-Lupus. We used the well-characterized MRL/lpr lupus animal model in two studies as a first step to develop and evaluate future studies in humans.

Results: In study one we identified possible diagnostic peptides for both lupus and altered behavior in the forced swim test. When comparing the results of study one to that of study two (carried out in a similar manner), we further identified potential peptides that may be diagnostic and predictive of both lupus and altered behavior in the forced swim test. We also characterized five potentially pathogenic brain-reactive autoantibodies, as well as suggested possible brain targets.

Conclusions: These results indicate that immunosignaturing could predict and diagnose lupus and its CNS manifestations. It can also be used to characterize pathogenic autoantibodies, which may help to better understand the underlying mechanisms of CNS-Lupus.

ContributorsWilliams, Stephanie (Author) / Stafford, Phillip (Author) / Hoffman, Steven (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-06-07
129245-Thumbnail Image.png
Description

We investigate near-field radiative heat transfer between Indium Tin Oxide (ITO) nanowire arrays which behave as type 1 and 2 hyperbolic metamaterials. Using spatial dispersion dependent effective medium theory to model the dielectric function of the nanowires, the impact of filling fraction on the heat transfer is analyzed. Depending on

We investigate near-field radiative heat transfer between Indium Tin Oxide (ITO) nanowire arrays which behave as type 1 and 2 hyperbolic metamaterials. Using spatial dispersion dependent effective medium theory to model the dielectric function of the nanowires, the impact of filling fraction on the heat transfer is analyzed. Depending on the filling fraction, it is possible to achieve both types of hyperbolic modes. At 150 nm vacuum gap, the heat transfer between the nanowires with 0.5 filling fraction can be 11 times higher than that between two bulk ITOs. For vacuum gaps less than 150 nm the heat transfer increases as the filling fraction decreases. Results obtained from this study will facilitate applications of ITO nanowires as hyperbolic metamaterials for energy systems.

ContributorsChang, Jui-Yung (Author) / Basu, Soumyadipta (Author) / Wang, Liping (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-02-07
128591-Thumbnail Image.png
Description

Gas seeps emanating from Yanartaş (Chimera), Turkey, have been documented for thousands of years. Active serpentinization produces hydrogen and a range of carbon gases that may provide fuel for life. Here we report a newly discovered, ephemeral fluid seep emanating from a small gas vent at Yanartaş. Fluids and biofilms

Gas seeps emanating from Yanartaş (Chimera), Turkey, have been documented for thousands of years. Active serpentinization produces hydrogen and a range of carbon gases that may provide fuel for life. Here we report a newly discovered, ephemeral fluid seep emanating from a small gas vent at Yanartaş. Fluids and biofilms were sampled at the source and points downstream. We describe site conditions, and provide microbiological data in the form of enrichment cultures, Scanning electron microscopy (SEM), carbon and nitrogen isotopic composition of solids, and PCR screens of nitrogen cycle genes. Source fluids are pH 11.95, with a Ca:Mg of ~200, and sediments under the ignited gas seep measure 60°C. Collectively, these data suggest the fluid is the product of active serpentinization at depth. Source sediments are primarily calcite and alteration products (chlorite and montmorillonite). Downstream, biofilms are mixed with montmorillonite. SEM shows biofilms distributed homogeneously with carbonates. Organic carbon accounts for 60% of the total carbon at the source, decreasing downstream to <15% as inorganic carbon precipitates. δ13C ratios of the organic carbon fraction of solids are depleted (−25 to −28‰) relative to the carbonates (−11 to −20‰). We conclude that heterotrophic processes are dominant throughout the surface ecosystem, and carbon fixation may be key down channel. δ15N ratios ~3‰, and absence of nifH in extracted DNA suggest that nitrogen fixation is not occurring in sediments. However, the presence of narG and nirS at most locations and in enrichments indicates genomic potential for nitrate and nitrite reduction. This small seep with shallow run-off is likely ephemeral, but abundant preserved microterracettes in the outflow and the surrounding area suggest it has been present for some time. This site and others like it present an opportunity for investigations of preserved deep biosphere signatures, and subsurface-surface interactions.

ContributorsMeyer-Dombard, D'Arcy R. (Author) / Woycheese, Kristin M. (Author) / Yargicoglu, Erin N. (Author) / Cardace, Dawn (Author) / Shock, Everett (Author) / Gulecal-Pektas, Yasemin (Author) / Temel, Mustafa (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-01-19
127830-Thumbnail Image.png
Description

Recent infectious outbreaks highlight the need for platform technologies that can be quickly deployed to develop therapeutics needed to contain the outbreak. We present a simple concept for rapid development of new antimicrobials. The goal was to produce in as little as one week thousands of doses of an intervention

Recent infectious outbreaks highlight the need for platform technologies that can be quickly deployed to develop therapeutics needed to contain the outbreak. We present a simple concept for rapid development of new antimicrobials. The goal was to produce in as little as one week thousands of doses of an intervention for a new pathogen. We tested the feasibility of a system based on antimicrobial synbodies. The system involves creating an array of 100 peptides that have been selected for broad capability to bind and/or kill viruses and bacteria. The peptides are pre-screened for low cell toxicity prior to large scale synthesis. Any pathogen is then assayed on the chip to find peptides that bind or kill it. Peptides are combined in pairs as synbodies and further screened for activity and toxicity. The lead synbody can be quickly produced in large scale, with completion of the entire process in one week.

ContributorsJohnston, Stephen (Author) / Domenyuk, Valeriy (Author) / Gupta, Nidhi (Author) / Tavares Batista, Milene (Author) / Lainson, John (Author) / Zhao, Zhan-Gong (Author) / Lusk, Joel (Author) / Loskutov, Andrey (Author) / Cichacz, Zbigniew (Author) / Stafford, Phillip (Author) / Legutki, Joseph Barten (Author) / Diehnelt, Chris (Author) / Biodesign Institute (Contributor)
Created2017-12-14
128852-Thumbnail Image.png
Description

Immunosignaturing shows promise as a general approach to diagnosis. It has been shown to detect immunological signs of infection early during the course of disease and to distinguish Alzheimer’s disease from healthy controls. Here we test whether immunosignatures correspond to clinical classifications of disease using samples from people with brain

Immunosignaturing shows promise as a general approach to diagnosis. It has been shown to detect immunological signs of infection early during the course of disease and to distinguish Alzheimer’s disease from healthy controls. Here we test whether immunosignatures correspond to clinical classifications of disease using samples from people with brain tumors. Blood samples from patients undergoing craniotomies for therapeutically naïve brain tumors with diagnoses of astrocytoma (23 samples), Glioblastoma multiforme (22 samples), mixed oligodendroglioma/astrocytoma (16 samples), oligodendroglioma (18 samples), and 34 otherwise healthy controls were tested by immunosignature. Because samples were taken prior to adjuvant therapy, they are unlikely to be perturbed by non-cancer related affects. The immunosignaturing platform distinguished not only brain cancer from controls, but also pathologically important features about the tumor including type, grade, and the presence or absence of O6-methyl-guanine-DNA methyltransferase methylation promoter (MGMT), an important biomarker that predicts response to temozolomide in Glioblastoma multiformae patients.

ContributorsHughes, Alexa (Author) / Cichacz, Zbigniew (Author) / Scheck, Adrienne (Author) / Coons, Stephen W. (Author) / Johnston, Stephen (Author) / Stafford, Phillip (Author) / Biodesign Institute (Contributor)
Created2012-07-16
128834-Thumbnail Image.png
Description

Introduction: The ketogenic diet (KD) is a high-fat, low-carbohydrate diet that alters metabolism by increasing the level of ketone bodies in the blood. KetoCal® (KC) is a nutritionally complete, commercially available 4∶1 (fat∶ carbohydrate+protein) ketogenic formula that is an effective non-pharmacologic treatment for the management of refractory pediatric epilepsy. Diet-induced ketosis

Introduction: The ketogenic diet (KD) is a high-fat, low-carbohydrate diet that alters metabolism by increasing the level of ketone bodies in the blood. KetoCal® (KC) is a nutritionally complete, commercially available 4∶1 (fat∶ carbohydrate+protein) ketogenic formula that is an effective non-pharmacologic treatment for the management of refractory pediatric epilepsy. Diet-induced ketosis causes changes to brain homeostasis that have potential for the treatment of other neurological diseases such as malignant gliomas.

Methods: We used an intracranial bioluminescent mouse model of malignant glioma. Following implantation animals were maintained on standard diet (SD) or KC. The mice received 2×4 Gy of whole brain radiation and tumor growth was followed by in vivo imaging.

Results: Animals fed KC had elevated levels of β-hydroxybutyrate (p = 0.0173) and an increased median survival of approximately 5 days relative to animals maintained on SD. KC plus radiation treatment were more than additive, and in 9 of 11 irradiated animals maintained on KC the bioluminescent signal from the tumor cells diminished below the level of detection (p<0.0001). Animals were switched to SD 101 days after implantation and no signs of tumor recurrence were seen for over 200 days.

Conclusions: KC significantly enhances the anti-tumor effect of radiation. This suggests that cellular metabolic alterations induced through KC may be useful as an adjuvant to the current standard of care for the treatment of human malignant gliomas.

ContributorsAbdelwahab, Mohammed G. (Author) / Fenton, Kathryn E. (Author) / Preul, Mark C. (Author) / Rho, Jong M. (Author) / Lynch, Andrew (Author) / Stafford, Phillip (Author) / Scheck, Adrienne C. (Author) / Biodesign Institute (Contributor)
Created2012-05-01
128833-Thumbnail Image.png
Description

Over 100 hot spring sediment samples were collected from 28 sites in 12 areas/regions, while recording as many coincident geochemical properties as feasible (>60 analytes). PCR was used to screen samples for Korarchaeota 16S rRNA genes. Over 500 Korarchaeota 16S rRNA genes were screened by RFLP analysis and 90 were

Over 100 hot spring sediment samples were collected from 28 sites in 12 areas/regions, while recording as many coincident geochemical properties as feasible (>60 analytes). PCR was used to screen samples for Korarchaeota 16S rRNA genes. Over 500 Korarchaeota 16S rRNA genes were screened by RFLP analysis and 90 were sequenced, resulting in identification of novel Korarchaeota phylotypes and exclusive geographical variants. Korarchaeota diversity was low, as in other terrestrial geothermal systems, suggesting a marine origin for Korarchaeota with subsequent niche-invasion into terrestrial systems. Korarchaeota endemism is consistent with endemism of other terrestrial thermophiles and supports the existence of dispersal barriers. Korarchaeota were found predominantly in >55°C springs at pH 4.7–8.5 at concentrations up to 6.6×106 16S rRNA gene copies g-1 wet sediment. In Yellowstone National Park (YNP), Korarchaeota were most abundant in springs with a pH range of 5.7 to 7.0. High sulfate concentrations suggest these fluids are influenced by contributions from hydrothermal vapors that may be neutralized to some extent by mixing with water from deep geothermal sources or meteoric water. In the Great Basin (GB), Korarchaeota were most abundant at spring sources of pH<7.2 with high particulate C content and high alkalinity, which are likely to be buffered by the carbonic acid system. It is therefore likely that at least two different geological mechanisms in YNP and GB springs create the neutral to mildly acidic pH that is optimal for Korarchaeota. A classification support vector machine (C-SVM) trained on single analytes, two analyte combinations, or vectors from non-metric multidimensional scaling models was able to predict springs as Korarchaeota-optimal or sub-optimal habitats with accuracies up to 95%. To our knowledge, this is the most extensive analysis of the geochemical habitat of any high-level microbial taxon and the first application of a C-SVM to microbial ecology.

ContributorsMiller-Coleman, Robin L. (Author) / Dodsworth, Jeremy A. (Author) / Ross, Christian A. (Author) / Shock, Everett (Author) / Williams, Amanda (Author) / Hartnett, Hilairy (Author) / McDonald, Austin I. (Author) / Havig, Jeff (Author) / Hedlund, Brian P. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2012-05-04
128824-Thumbnail Image.png
Description

Many studies link the compositions of microbial communities to their environments, but the energetics of organism-specific biomass synthesis as a function of geochemical variables have rarely been assessed. We describe a thermodynamic model that integrates geochemical and metagenomic data for biofilms sampled at five sites along a thermal and chemical

Many studies link the compositions of microbial communities to their environments, but the energetics of organism-specific biomass synthesis as a function of geochemical variables have rarely been assessed. We describe a thermodynamic model that integrates geochemical and metagenomic data for biofilms sampled at five sites along a thermal and chemical gradient in the outflow channel of the hot spring known as “Bison Pool” in Yellowstone National Park. The relative abundances of major phyla in individual communities sampled along the outflow channel are modeled by computing metastable equilibrium among model proteins with amino acid compositions derived from metagenomic sequences. Geochemical conditions are represented by temperature and activities of basis species, including pH and oxidation-reduction potential quantified as the activity of dissolved hydrogen. By adjusting the activity of hydrogen, the model can be tuned to closely approximate the relative abundances of the phyla observed in the community profiles generated from BLAST assignments. The findings reveal an inverse relationship between the energy demand to form the proteins at equal thermodynamic activities and the abundance of phyla in the community. The distance from metastable equilibrium of the communities, assessed using an equation derived from energetic considerations that is also consistent with the information-theoretic entropy change, decreases along the outflow channel. Specific divergences from metastable equilibrium, such as an underprediction of the relative abundances of phototrophic organisms at lower temperatures, can be explained by considering additional sources of energy and/or differences in growth efficiency. Although the metabolisms used by many members of these communities are driven by chemical disequilibria, the results support the possibility that higher-level patterns of chemotrophic microbial ecosystems are shaped by metastable equilibrium states that depend on both the composition of biomass and the environmental conditions.

ContributorsDick, Jeffrey M. (Author) / Shock, Everett (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-09-02
129319-Thumbnail Image.png
Description

In this letter, we study the near-field radiative heat transfer between two metamaterial substrates coated with silicon carbide (SiC) thin films. It is known that metamaterials can enhance the near-field heat transfer over ordinary materials due to excitation of magnetic plasmons associated with s polarization, while strong surface phonon polariton

In this letter, we study the near-field radiative heat transfer between two metamaterial substrates coated with silicon carbide (SiC) thin films. It is known that metamaterials can enhance the near-field heat transfer over ordinary materials due to excitation of magnetic plasmons associated with s polarization, while strong surface phonon polariton exists for SiC. By careful tuning of the optical properties of metamaterial, it is possible to excite electrical and magnetic resonances for the metamaterial and surface phonon polaritons for SiC at different spectral regions, resulting in the enhanced heat transfer. The effect of the SiC film thickness at different vacuum gaps is investigated. Results obtained from this study will be beneficial for application of thin film coatings for energy harvesting.

ContributorsBasu, Soumyadipta (Author) / Yang, Yue (Author) / Wang, Liping (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-19
129292-Thumbnail Image.png
Description

A film-coupled metamaterial structure is numerically investigated for enhancing the light absorption in an ultrathin photovoltaic layer of crystalline gallium arsenide (GaAs). The top subwavelength concave grating and the bottom metallic film could not only effectively trap light with the help of wave interference and magnetic resonance effects excited above

A film-coupled metamaterial structure is numerically investigated for enhancing the light absorption in an ultrathin photovoltaic layer of crystalline gallium arsenide (GaAs). The top subwavelength concave grating and the bottom metallic film could not only effectively trap light with the help of wave interference and magnetic resonance effects excited above the bandgap, but also practically serve as electrical contacts for photon-generated charge collection. The energy absorbed by the active layer is greatly enhanced with the help of the film-coupled metamaterial structure, resulting in significant improvement on the short-circuit current density by three times over a free-standing GaAs layer at the same thickness. The performance of the proposed light trapping structure is demonstrated to be little affected by the grating ridge width considering the geometric tolerance during fabrication. The optical absorption at oblique incidences also shows direction-insensitive behavior, which is highly desired for efficiently converting off-normal sunlight to electricity. The results would facilitate the development of next-generation ultrathin solar cells with lower cost and higher efficiency.

ContributorsWang, Hao (Author) / Wang, Liping (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-02-01