This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 31 - 40 of 54
Filtering by

Clear all filters

127945-Thumbnail Image.png
Description

With the advent of high-dimensional stored big data and streaming data, suddenly machine learning on a very large scale has become a critical need. Such machine learning should be extremely fast, should scale up easily with volume and dimension, should be able to learn from streaming data, should automatically perform

With the advent of high-dimensional stored big data and streaming data, suddenly machine learning on a very large scale has become a critical need. Such machine learning should be extremely fast, should scale up easily with volume and dimension, should be able to learn from streaming data, should automatically perform dimension reduction for high-dimensional data, and should be deployable on hardware. Neural networks are well positioned to address these challenges of large scale machine learning. In this paper, we present a method that can effectively handle large scale, high-dimensional data. It is an online method that can be used for both streaming and large volumes of stored big data. It primarily uses Kohonen nets, although only a few selected neurons (nodes) from multiple Kohonen nets are actually retained in the end; we discard all Kohonen nets after training. We use Kohonen nets both for dimensionality reduction through feature selection and for building an ensemble of classifiers using single Kohonen neurons. The method is meant to exploit massive parallelism and should be easily deployable on hardware that implements Kohonen nets. Some initial computational results are presented.

ContributorsRoy, Asim (Author) / W.P. Carey School of Business (Contributor)
Created2015-08-10
127980-Thumbnail Image.png
Description

Humans are able to intuitively exploit the shape of an object and environmental constraints to achieve stable grasps and perform dexterous manipulations. In doing that, a vast range of kinematic strategies can be observed. However, in this work we formulate the hypothesis that such ability can be described in terms

Humans are able to intuitively exploit the shape of an object and environmental constraints to achieve stable grasps and perform dexterous manipulations. In doing that, a vast range of kinematic strategies can be observed. However, in this work we formulate the hypothesis that such ability can be described in terms of a synergistic behavior in the generation of hand postures, i.e., using a reduced set of commonly used kinematic patterns. This is in analogy with previous studies showing the presence of such behavior in different tasks, such as grasping. We investigated this hypothesis in experiments performed by six subjects, who were asked to grasp objects from a flat surface. We quantitatively characterized hand posture behavior from a kinematic perspective, i.e., the hand joint angles, in both pre-shaping and during the interaction with the environment. To determine the role of tactile feedback, we repeated the same experiments but with subjects wearing a rigid shell on the fingertips to reduce cutaneous afferent inputs. Results show the persistence of at least two postural synergies in all the considered experimental conditions and phases. Tactile impairment does not alter significantly the first two synergies, and contact with the environment generates a change only for higher order Principal Components. A good match also arises between the first synergy found in our analysis and the first synergy of grasping as quantified by previous work. The present study is motivated by the interest of learning from the human example, extracting lessons that can be applied in robot design and control. Thus, we conclude with a discussion on implications for robotics of our findings.

ContributorsDella Santina, Cosimo (Author) / Bianchi, Matteo (Author) / Averta, Giuseppe (Author) / Ciotti, Simone (Author) / Arapi, Visar (Author) / Fani, Simone (Author) / Battaglia, Edoardo (Author) / Giuseppe Catalano, Manuel (Author) / Santello, Marco (Author) / Bicchi, Antonio (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-08-29
128289-Thumbnail Image.png
Description

Theoretical perspectives on anticipatory planning of object manipulation have traditionally been informed by studies that have investigated kinematics (hand shaping and digit position) and kinetics (forces) in isolation. This poses limitations on our understanding of the integration of such domains, which have recently been shown to be strongly interdependent. Specifically,

Theoretical perspectives on anticipatory planning of object manipulation have traditionally been informed by studies that have investigated kinematics (hand shaping and digit position) and kinetics (forces) in isolation. This poses limitations on our understanding of the integration of such domains, which have recently been shown to be strongly interdependent. Specifically, recent studies revealed strong covariation of digit position and load force during the loading phase of two-digit grasping. Here, we determined whether such digit force-position covariation is a general feature of grasping. We investigated the coordination of digit position and forces during five-digit whole-hand manipulation of an object with a variable mass distribution. Subjects were instructed to prevent object roll during the lift. As found in precision grasping, there was strong trial-to-trial covariation of digit position and force. This suggests that the natural variation of digit position that is compensated for by trial-to-trial variation in digit forces is a fundamental feature of grasp control, and not only specific to precision grasp. However, a main difference with precision grasping was that modulation of digit position to the object’s mass distribution was driven predominantly by the thumb, with little to no modulation of finger position. Modulation of thumb position rather than fingers is likely due to its greater range of motion and therefore adaptability to object properties. Our results underscore the flexibility of the central nervous system in implementing a range of solutions along the digit force-to-position continuum for dexterous manipulation.

ContributorsMarneweck, Michelle (Author) / Lee-Miller, Trevor (Author) / Santello, Marco (Author) / Gordon, Andrew M. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-09-15
128270-Thumbnail Image.png
Description

Based on considerable neurophysiological evidence, Roy (2012) proposed the theory that localist representation is widely used in the brain, starting from the lowest levels of processing. Grandmother cells are a special case of localist representation. In this article, I present the theory that grandmother cells are also widely used in

Based on considerable neurophysiological evidence, Roy (2012) proposed the theory that localist representation is widely used in the brain, starting from the lowest levels of processing. Grandmother cells are a special case of localist representation. In this article, I present the theory that grandmother cells are also widely used in the brain. To support the proposed theory, I present neurophysiological evidence and an analysis of the concept of grandmother cells. Konorski (1967) first predicted the existence of grandmother cells (he called them “gnostic” neurons) - single neurons that respond to complex stimuli such as faces, hands, expressions, objects, and so on. The term “grandmother cell” was introduced by Jerry Lettvin in 1969 (Barlow, 1995).

ContributorsRoy, Asim (Author) / W.P. Carey School of Business (Contributor)
Created2013-05-24
128364-Thumbnail Image.png
Description

Of particular interest to the neuroscience and robotics communities is the understanding of how two humans could physically collaborate to perform motor tasks such as holding a tool or moving it across locations. When two humans physically interact with each other, sensory consequences and motor outcomes are not entirely predictable

Of particular interest to the neuroscience and robotics communities is the understanding of how two humans could physically collaborate to perform motor tasks such as holding a tool or moving it across locations. When two humans physically interact with each other, sensory consequences and motor outcomes are not entirely predictable as they also depend on the other agent’s actions. The sensory mechanisms involved in physical interactions are not well understood. The present study was designed (1) to quantify human–human physical interactions where one agent (“follower”) has to infer the intended or imagined—but not executed—direction of motion of another agent (“leader”) and (2) to reveal the underlying strategies used by the dyad. This study also aimed at verifying the extent to which visual feedback (VF) is necessary for communicating intended movement direction. We found that the control of leader on the relationship between force and motion was a critical factor in conveying his/her intended movement direction to the follower regardless of VF of the grasped handle or the arms. Interestingly, the dyad’s ability to communicate and infer movement direction with significant accuracy improved (>83%) after a relatively short amount of practice. These results indicate that the relationship between force and motion (interpreting as arm impedance modulation) may represent an important means for communicating intended movement direction between biological agents, as indicated by the modulation of this relationship to intended direction. Ongoing work is investigating the application of the present findings to optimize communication of high-level movement goals during physical interactions between biological and non-biological agents.

ContributorsMojtahedi, Keivan (Author) / Whitsell, Bryan (Author) / Artemiadis, Panagiotis (Author) / Santello, Marco (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-04-13
128241-Thumbnail Image.png
Description

This study is an attempt to use group information collected on climate change from farmers in eastern Uttar Pradesh, India to address a key question related to climate change policy: How to encourage farmers to adapt to climate change? First, we investigate farmers’ perception of and adaptation to climate change

This study is an attempt to use group information collected on climate change from farmers in eastern Uttar Pradesh, India to address a key question related to climate change policy: How to encourage farmers to adapt to climate change? First, we investigate farmers’ perception of and adaptation to climate change using content analysis and group information. The findings are then compared with climatic and agriculture information collected through secondary sources. Results suggest that though farmers are aware of long-term changes in climatic factors (temperature and rainfall, for example), they are unable to identify these changes as climate change. Farmers are also aware of risks generated by climate variability and extreme climatic events. However, farmers are not taking concrete steps in dealing with perceived climatic changes, although we find out that farmers are changing their agricultural and farming practices. These included changing sowing and harvesting timing, cultivation of crops of short duration varieties, inter-cropping, changing cropping pattern, investment in irrigation, and agroforestry. Note that these changes may be considered as passive response or adaptation strategies to climate change. Perhaps farmers are implicitly taking initiatives to adapt climate change. Finally, the paper suggests some policy interventions to scale up adaptation to climate change in Indian agriculture.

ContributorsTripathi, Amarnath (Author) / Mishra, Ashok (Author) / W.P. Carey School of Business (Contributor)
Created2016-11-24
128226-Thumbnail Image.png
Description

The human hand has so many degrees of freedom that it may seem impossible to control. A potential solution to this problem is “synergy control” which combines dimensionality reduction with great flexibility. With applicability to a wide range of tasks, this has become a very popular concept. In this review,

The human hand has so many degrees of freedom that it may seem impossible to control. A potential solution to this problem is “synergy control” which combines dimensionality reduction with great flexibility. With applicability to a wide range of tasks, this has become a very popular concept. In this review, we describe the evolution of the modern concept using studies of kinematic and force synergies in human hand control, neurophysiology of cortical and spinal neurons, and electromyographic (EMG) activity of hand muscles. We go beyond the often purely descriptive usage of synergy by reviewing the organization of the underlying neuronal circuitry in order to propose mechanistic explanations for various observed synergy phenomena. Finally, we propose a theoretical framework to reconcile important and still debated concepts such as the definitions of “fixed” vs. “flexible” synergies and mechanisms underlying the combination of synergies for hand control.

ContributorsSantello, Marco (Author) / Baud-Bovy, Gabriel (Author) / Jorntell, Henrik (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2013-04-08
129376-Thumbnail Image.png
Description

We study whether people became less likely to switch Medicare prescription drug plans (PDPs) due to more options and more time in Part D. Panel data for a random 20 percent sample of enrollees from 2006-2010 show that 50 percent were not in their original PDPs by 2010. Individuals switched

We study whether people became less likely to switch Medicare prescription drug plans (PDPs) due to more options and more time in Part D. Panel data for a random 20 percent sample of enrollees from 2006-2010 show that 50 percent were not in their original PDPs by 2010. Individuals switched PDPs in response to higher costs of their status quo plans, saving them money. Contrary to choice overload, larger choice sets increased switching unless the additional plans were relatively expensive. Neither switching overall nor responsiveness to costs declined over time, and above-minimum spending in 2010 remained below the 2006 and 2007 levels.

ContributorsKetcham, Jonathan (Author) / Lucarelli, Claudio (Author) / Powers, Christopher A. (Author) / W.P. Carey School of Business (Contributor)
Created2015-01-01
129361-Thumbnail Image.png
Description

Sensorimotor control theories propose that the central nervous system exploits expected sensory consequences generated by motor commands for movement planning, as well as online sensory feedback for comparison with expected sensory feedback for monitoring and correcting, if needed, ongoing motor output. In our study, we tested this theoretical framework by

Sensorimotor control theories propose that the central nervous system exploits expected sensory consequences generated by motor commands for movement planning, as well as online sensory feedback for comparison with expected sensory feedback for monitoring and correcting, if needed, ongoing motor output. In our study, we tested this theoretical framework by quantifying the functional role of expected vs. actual proprioceptive feedback for planning and regulation of gait in humans. We addressed this question by using a novel methodological approach to deliver fast perturbations of the walking surface stiffness, in conjunction with a virtual reality system that provided visual feedback of upcoming changes of surface stiffness. In the “predictable” experimental condition, we asked subjects to learn associating visual feedback of changes in floor stiffness (sand patch) during locomotion to quantify kinematic and kinetic changes in gait prior to and during the gait cycle. In the “unpredictable” experimental condition, we perturbed floor stiffness at unpredictable instances during the gait to characterize the gait-phase dependent strategies in recovering the locomotor cycle. For the “unpredictable” conditions, visual feedback of changes in floor stiffness was absent or inconsistent with tactile and proprioceptive feedback. The investigation of these perturbation-induced effects on contralateral leg kinematics revealed that visual feedback of upcoming changes in floor stiffness allows for both early (preparatory) and late (post-perturbation) changes in leg kinematics. However, when proprioceptive feedback is not available, the early responses in leg kinematics do not occur while the late responses are preserved although in a, slightly attenuated form. The methods proposed in this study and the preliminary results of the kinematic response of the contralateral leg open new directions for the investigation of the relative role of visual, tactile, and proprioceptive feedback on gait control, with potential implications for designing novel robot-assisted gait rehabilitation approaches.

ContributorsFrost, Ryan (Author) / Skidmore, Jeffrey (Author) / Santello, Marco (Author) / Artemiadis, Panagiotis (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-02-09
129342-Thumbnail Image.png
Description

We argue that the strength with which the organization communicates expectations regarding the appropriate emotional expression toward customers (i.e., explicitness of display rules) has an inverted U-shaped relationship with service delivery behaviors, customer satisfaction, and sales performance. Further, we argue that service organizations need a particular blend of explicitness of

We argue that the strength with which the organization communicates expectations regarding the appropriate emotional expression toward customers (i.e., explicitness of display rules) has an inverted U-shaped relationship with service delivery behaviors, customer satisfaction, and sales performance. Further, we argue that service organizations need a particular blend of explicitness of display rules and role discretion for the purpose of optimizing sales performance. As hypothesized, findings from 2 samples of salespeople suggest that either high or low explicitness of display rules impedes service delivery behaviors and sales performance, which peaks at moderate explicitness of display rules and high role discretion. The findings also suggest that the explicitness of display rules has a positive relationship with customer satisfaction.

ContributorsChristoforou, Paraskevi S. (Author) / Ashforth, Blake (Author) / W.P. Carey School of Business (Contributor)
Created2015-01-01