This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 21 - 30 of 41
Filtering by

Clear all filters

128483-Thumbnail Image.png
Description

How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand

How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. Here, we combined kinematic, electromyography, and brain activity measures obtained by functional magnetic resonance imaging while subjects performed a variety of movements towards virtual objects. Hand postural information, encoded through kinematic synergies, were represented in cortical areas devoted to hand motor control and successfully discriminated individual grasping movements, significantly outperforming alternative somatotopic or muscle-based models. Importantly, hand postural synergies were predicted by neural activation patterns within primary motor cortex. These findings support a novel cortical organization for hand movement control and open potential applications for brain-computer interfaces and neuroprostheses.

ContributorsLeo, Andrea (Author) / Handjaras, Giacomo (Author) / Bianchi, Matteo (Author) / Marino, Hamal (Author) / Gabiccini, Marco (Author) / Guidi, Andrea (Author) / Scilingo, Enzo Pasquale (Author) / Pietrini, Pietro (Author) / Bicchi, Antonio (Author) / Santello, Marco (Author) / Ricciardi, Emiliano (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-02-15
129563-Thumbnail Image.png
Description

Humans are able to modulate digit forces as a function of position despite changes in digit placement that might occur from trial to trial or when changing grip type for object manipulation. Although this phenomenon is likely to rely on sensing the position of the digits relative to each other

Humans are able to modulate digit forces as a function of position despite changes in digit placement that might occur from trial to trial or when changing grip type for object manipulation. Although this phenomenon is likely to rely on sensing the position of the digits relative to each other and the object, the underlying mechanisms remain unclear. To address this question, we asked subjects (n = 30) to match perceived vertical distance between the center of pressure (CoP) of the thumb and index finger pads (dy) of the right hand (“reference” hand) using the same hand (“test” hand). The digits of reference hand were passively placed collinearly (dy = 0 mm). Subjects were then asked to exert different combinations of normal and tangential digit forces (Fn and Ftan, respectively) using the reference hand and then match the memorized dy using the test hand. The reference hand exerted Ftan of thumb and index finger in either same or opposite direction. We hypothesized that, when the tangential forces of the digits are produced in opposite directions, matching error (1) would be biased toward the directions of the tangential forces; and (2) would be greater when the remembered relative contact points are matched with negligible digit force production. For the test hand, digit forces were either negligible (0.5–1 N, 0 ± 0.25 N; Experiment 1) or the same as those exerted by the reference hand (Experiment 2).Matching error was biased towards the direction of digit tangential forces: thumb CoP was placed higher than the index finger CoP when thumb and index finger Ftan were directed upward and downward, respectively, and vice versa (p < 0.001). However, matching error was not dependent on whether the reference and test hand exerted similar or different forces. We propose that the expected sensory consequence of motor commands for tangential forces in opposite directions overrides estimation of fingertip position through haptic sensory feedback.

ContributorsShibata, Daisuke (Author) / Kappers, Astrid M. L. (Author) / Santello, Marco (Author) / College of Health Solutions (Contributor)
Created2014-08-04
129056-Thumbnail Image.png
Description

Background: Carpal tunnel syndrome (CTS) is a compression neuropathy of the median nerve that results in sensorimotor deficits in the hand. Until recently, the effects of CTS on hand function have been studied using mostly two-digit grip tasks. The purpose of this study was to investigate the coordination of multi-digit forces

Background: Carpal tunnel syndrome (CTS) is a compression neuropathy of the median nerve that results in sensorimotor deficits in the hand. Until recently, the effects of CTS on hand function have been studied using mostly two-digit grip tasks. The purpose of this study was to investigate the coordination of multi-digit forces as a function of object center of mass (CM) during whole-hand grasping.

Methods: Fourteen CTS patients and age- and gender-matched controls were instructed to grasp, lift, hold, and release a grip device with five digits for seven consecutive lifts while maintaining its vertical orientation. The object CM was changed by adding a mass at different locations at the base of the object. We measured forces and torques exerted by each digit and object kinematics and analyzed modulation of these variables to object CM at object lift onset and during object hold. Our task requires a modulation of digit forces at and after object lift onset to generate a compensatory moment to counteract the external moment caused by the added mass and to minimize object tilt.

Results: We found that CTS patients learned to generate a compensatory moment and minimized object roll to the same extent as controls. However, controls fully exploited the available degrees of freedom (DoF) in coordinating their multi-digit forces to generate a compensatory moment, i.e., digit normal forces, tangential forces, and the net center of pressure on the finger side of the device at object lift onset and during object hold. In contrast, patients modulated only one of these DoFs (the net center of pressure) to object CM by modulating individual normal forces at object lift onset. During object hold, however, CTS patients were able to modulate digit tangential force distribution to object CM.

Conclusions: Our findings suggest that, although CTS did not affect patients’ ability to perform our manipulation task, it interfered with the modulation of specific grasp control variables. This phenomenon might be indicative of a lower degree of flexibility of the sensorimotor system in CTS to adapt to grasp task conditions.

ContributorsZhang, Wei (Author) / Johnston, Jamie A. (Author) / Ross, Mark A. (Author) / Coakley, Brandon J. (Author) / Gleason, Elizabeth A. (Author) / Dueck, Amylou C. (Author) / Santello, Marco (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2012-11-21
128770-Thumbnail Image.png
Description

Urban environmental measurements and observational statistics should reflect the properties generated over an adjacent area of adequate length where homogeneity is usually assumed. The determination of this characteristic source area that gives sufficient representation of the horizontal coverage of a sensing instrument or the fetch of transported quantities is of

Urban environmental measurements and observational statistics should reflect the properties generated over an adjacent area of adequate length where homogeneity is usually assumed. The determination of this characteristic source area that gives sufficient representation of the horizontal coverage of a sensing instrument or the fetch of transported quantities is of critical importance to guide the design and implementation of urban landscape planning strategies. In this study, we aim to unify two different methods for estimating source areas, viz. the statistical correlation method commonly used by geographers for landscape fragmentation and the mechanistic footprint model by meteorologists for atmospheric measurements. Good agreement was found in the intercomparison of the estimate of source areas by the two methods, based on 2-m air temperature measurement collected using a network of weather stations. The results can be extended to shed new lights on urban planning strategies, such as the use of urban vegetation for heat mitigation. In general, a sizable patch of landscape is required in order to play an effective role in regulating the local environment, proportional to the height at which stakeholders’ interest is mainly concerned.

ContributorsWang, Zhi-Hua (Author) / Fan, Chao (Author) / Myint, Soe (Author) / Wang, Chenghao (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-11-10
128742-Thumbnail Image.png
Description

Studies on anticipatory planning of object manipulation showed initial task failure (i.e., object roll) when visual object shape cues are incongruent with other visual cues, such as weight distribution/density (e.g., symmetrically shaped object with an asymmetrical density). This suggests that shape cues override density cues. However, these studies typically only

Studies on anticipatory planning of object manipulation showed initial task failure (i.e., object roll) when visual object shape cues are incongruent with other visual cues, such as weight distribution/density (e.g., symmetrically shaped object with an asymmetrical density). This suggests that shape cues override density cues. However, these studies typically only measured forces, with digit placement constrained. Recent evidence suggests that when digit placement is unconstrained, subjects modulate digit forces and placement. Thus, unconstrained digit placement might be modulated on initial trials (since it is an explicit process), but not forces (since it is an implicit process). We tested whether shape and density cues would differentially influence anticipatory planning of digit placement and forces during initial trials of a two-digit object manipulation task. Furthermore, we tested whether shape cues would override density cues when cues are incongruent. Subjects grasped and lifted an object with the aim of preventing roll. In Experiment 1, the object was symmetrically shaped, but with asymmetrical density (incongruent cues). In Experiment 2, the object was asymmetrical in shape and density (congruent cues). In Experiment 3, the object was asymmetrically shaped, but with symmetrical density (incongruent cues). Results showed differential modulation of digit placement and forces (modulation of load force but not placement), but only when shape and density cues were congruent. When shape and density cues were incongruent, we found collinear digit placement and symmetrical force sharing. This suggests that congruent and incongruent shape and density cues differentially influence anticipatory planning of digit forces and placement. Furthermore, shape cues do not always override density cues. A continuum of visual cues, such as those alluding to shape and density, need to be integrated.

ContributorsLee-Miller, Trevor (Author) / Marneweck, Michelle (Author) / Santello, Marco (Author) / Gordon, Andrew M. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-04-21
128424-Thumbnail Image.png
Description

Nocturnal cooling of urban areas governs the evolution of thermal state and many thermal-driven environmental issues in cities, especially those suffer strong urban heat island (UHI) effect. Advances in the fundamental understanding of the underlying physics of nighttime UHI involve disentangling complex contributing effects and remains an open challenge. In

Nocturnal cooling of urban areas governs the evolution of thermal state and many thermal-driven environmental issues in cities, especially those suffer strong urban heat island (UHI) effect. Advances in the fundamental understanding of the underlying physics of nighttime UHI involve disentangling complex contributing effects and remains an open challenge. In this study, we develop new numerical algorithms to characterize the thermodynamics of urban nocturnal cooling based on solving the energy balance equations for both the landscape surface and the overlying atmosphere. Further, a scaling law is proposed to relate the UHI intensity to a range of governing mechanisms, including the vertical and horizontal transport of heat in the surface layer, the urban-rural breeze, and the possible urban expansion. The accuracy of proposed methods is evaluated against in-situ urban measurements collected in cities with different geographic and climatic conditions. It is found that the vertical and horizontal contributors modulate the nocturnal UHI at distinct elevation in the atmospheric boundary layer.

ContributorsWang, Zhi-Hua (Author) / Li, Qi (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-04
127980-Thumbnail Image.png
Description

Humans are able to intuitively exploit the shape of an object and environmental constraints to achieve stable grasps and perform dexterous manipulations. In doing that, a vast range of kinematic strategies can be observed. However, in this work we formulate the hypothesis that such ability can be described in terms

Humans are able to intuitively exploit the shape of an object and environmental constraints to achieve stable grasps and perform dexterous manipulations. In doing that, a vast range of kinematic strategies can be observed. However, in this work we formulate the hypothesis that such ability can be described in terms of a synergistic behavior in the generation of hand postures, i.e., using a reduced set of commonly used kinematic patterns. This is in analogy with previous studies showing the presence of such behavior in different tasks, such as grasping. We investigated this hypothesis in experiments performed by six subjects, who were asked to grasp objects from a flat surface. We quantitatively characterized hand posture behavior from a kinematic perspective, i.e., the hand joint angles, in both pre-shaping and during the interaction with the environment. To determine the role of tactile feedback, we repeated the same experiments but with subjects wearing a rigid shell on the fingertips to reduce cutaneous afferent inputs. Results show the persistence of at least two postural synergies in all the considered experimental conditions and phases. Tactile impairment does not alter significantly the first two synergies, and contact with the environment generates a change only for higher order Principal Components. A good match also arises between the first synergy found in our analysis and the first synergy of grasping as quantified by previous work. The present study is motivated by the interest of learning from the human example, extracting lessons that can be applied in robot design and control. Thus, we conclude with a discussion on implications for robotics of our findings.

ContributorsDella Santina, Cosimo (Author) / Bianchi, Matteo (Author) / Averta, Giuseppe (Author) / Ciotti, Simone (Author) / Arapi, Visar (Author) / Fani, Simone (Author) / Battaglia, Edoardo (Author) / Giuseppe Catalano, Manuel (Author) / Santello, Marco (Author) / Bicchi, Antonio (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-08-29
128312-Thumbnail Image.png
Description

A significant challenge of our time is conserving biological diversity while maintaining economic development and cultural values. The United Nations Educational, Scientific and Cultural Organization has established biosphere reserves within its Man and the Biosphere program as a model means for accomplishing this very challenge. The East Carpathians Biosphere Reserve

A significant challenge of our time is conserving biological diversity while maintaining economic development and cultural values. The United Nations Educational, Scientific and Cultural Organization has established biosphere reserves within its Man and the Biosphere program as a model means for accomplishing this very challenge. The East Carpathians Biosphere Reserve (ECBR), spreading across Poland, Slovakia, and Ukraine, represents a large social-ecological system (SES) that has been protected under the biosphere reserve designation since 1998. We have explored its successes and failures in improving human livelihoods while safeguarding its ecosystems. The SES framework, which includes governance system, actors, resources, and external influences, was used as a frame of analysis. The outcomes of this protected area have been mixed; its creation led to national and international collaboration, yet some actor groups remain excluded. Implementation of protocols arising from the Carpathian Convention has been slow, while deforestation, hunting, erosion, temperature extremes, and changes in species behavior remain significant threats but have also been factors in ecological adaptation. The loss of cultural links and traditional knowledge has also been significant. Nevertheless, this remains a highly biodiverse area. Political barriers and institutional blockages will have to be removed to ensure this reserve fulfills its role as a model region for international collaboration and capacity building. These insights drawn from the ECBR demonstrate that biosphere reserves are indeed learning sites for sustainable development and that this case is exemplary in illustrating the challenges, but more importantly, the opportunities that arise when ensuring parallel care and respect for people and ecosystems through the model of transboundary protected areas around the world.

Created2016
128289-Thumbnail Image.png
Description

Theoretical perspectives on anticipatory planning of object manipulation have traditionally been informed by studies that have investigated kinematics (hand shaping and digit position) and kinetics (forces) in isolation. This poses limitations on our understanding of the integration of such domains, which have recently been shown to be strongly interdependent. Specifically,

Theoretical perspectives on anticipatory planning of object manipulation have traditionally been informed by studies that have investigated kinematics (hand shaping and digit position) and kinetics (forces) in isolation. This poses limitations on our understanding of the integration of such domains, which have recently been shown to be strongly interdependent. Specifically, recent studies revealed strong covariation of digit position and load force during the loading phase of two-digit grasping. Here, we determined whether such digit force-position covariation is a general feature of grasping. We investigated the coordination of digit position and forces during five-digit whole-hand manipulation of an object with a variable mass distribution. Subjects were instructed to prevent object roll during the lift. As found in precision grasping, there was strong trial-to-trial covariation of digit position and force. This suggests that the natural variation of digit position that is compensated for by trial-to-trial variation in digit forces is a fundamental feature of grasp control, and not only specific to precision grasp. However, a main difference with precision grasping was that modulation of digit position to the object’s mass distribution was driven predominantly by the thumb, with little to no modulation of finger position. Modulation of thumb position rather than fingers is likely due to its greater range of motion and therefore adaptability to object properties. Our results underscore the flexibility of the central nervous system in implementing a range of solutions along the digit force-to-position continuum for dexterous manipulation.

ContributorsMarneweck, Michelle (Author) / Lee-Miller, Trevor (Author) / Santello, Marco (Author) / Gordon, Andrew M. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-09-15
128276-Thumbnail Image.png
Description

Urban land–atmosphere interactions can be captured by numerical modeling framework with coupled land surface and atmospheric processes, while the model performance depends largely on accurate input parameters. In this study, we use an advanced stochastic approach to quantify parameter uncertainty and model sensitivity of a coupled numerical framework for urban

Urban land–atmosphere interactions can be captured by numerical modeling framework with coupled land surface and atmospheric processes, while the model performance depends largely on accurate input parameters. In this study, we use an advanced stochastic approach to quantify parameter uncertainty and model sensitivity of a coupled numerical framework for urban land–atmosphere interactions. It is found that the development of urban boundary layer is highly sensitive to surface characteristics of built terrains. Changes of both urban land use and geometry impose significant impact on the overlying urban boundary layer dynamics through modification on bottom boundary conditions, i.e., by altering surface energy partitioning and surface aerodynamic resistance, respectively. Hydrothermal properties of conventional and green roofs have different impacts on atmospheric dynamics due to different surface energy partitioning mechanisms. Urban geometry (represented by the canyon aspect ratio), however, has a significant nonlinear impact on boundary layer structure and temperature. Besides, managing rooftop roughness provides an alternative option to change the boundary layer thermal state through modification of the vertical turbulent transport. The sensitivity analysis deepens our insight into the fundamental physics of urban land–atmosphere interactions and provides useful guidance for urban planning under challenges of changing climate and continuous global urbanization.

ContributorsSong, Jiyun (Author) / Wang, Zhi-Hua (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-05-24