This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 21 - 30 of 46
Filtering by

Clear all filters

128635-Thumbnail Image.png
Description

Background: Previous studies exploring sequence variation in the model legume, Medicago truncatula, relied on mapping short reads to a single reference. However, read-mapping approaches are inadequate to examine large, diverse gene families or to probe variation in repeat-rich or highly divergent genome regions. De novo sequencing and assembly of M. truncatula

Background: Previous studies exploring sequence variation in the model legume, Medicago truncatula, relied on mapping short reads to a single reference. However, read-mapping approaches are inadequate to examine large, diverse gene families or to probe variation in repeat-rich or highly divergent genome regions. De novo sequencing and assembly of M. truncatula genomes enables near-comprehensive discovery of structural variants (SVs), analysis of rapidly evolving gene families, and ultimately, construction of a pan-genome.

Results: Genome-wide synteny based on 15 de novo M. truncatula assemblies effectively detected different types of SVs indicating that as much as 22% of the genome is involved in large structural changes, altogether affecting 28% of gene models. A total of 63 million base pairs (Mbp) of novel sequence was discovered, expanding the reference genome space for Medicago by 16%. Pan-genome analysis revealed that 42% (180 Mbp) of genomic sequences is missing in one or more accession, while examination of de novo annotated genes identified 67% (50,700) of all ortholog groups as dispensable – estimates comparable to recent studies in rice, maize and soybean. Rapidly evolving gene families typically associated with biotic interactions and stress response were found to be enriched in the accession-specific gene pool. The nucleotide-binding site leucine-rich repeat (NBS-LRR) family, in particular, harbors the highest level of nucleotide diversity, large effect single nucleotide change, protein diversity, and presence/absence variation. However, the leucine-rich repeat (LRR) and heat shock gene families are disproportionately affected by large effect single nucleotide changes and even higher levels of copy number variation.

Conclusions: Analysis of multiple M. truncatula genomes illustrates the value of de novo assemblies to discover and describe structural variation, something that is often under-estimated when using read-mapping approaches. Comparisons among the de novo assemblies also indicate that different large gene families differ in the architecture of their structural variation.

ContributorsZhou, Peng (Author) / Silverstein, Kevin A. T. (Author) / Ramaraj, Thiruvarangan (Author) / Guhlin, Joseph (Author) / Denny, Roxanne (Author) / Liu, Junqi (Author) / Farmer, Andrew D. (Author) / Steele, Kelly (Author) / Stupar, Robert M. (Author) / Miller, Jason R. (Author) / Tiffin, Peter (Author) / Mudge, Joann (Author) / Young, Nevin D. (Author) / New College of Interdisciplinary Arts and Sciences (Contributor)
Created2017-03-27
128938-Thumbnail Image.png
Description

This survey of 206 forensic psychologists tested the “filtering” effects of preexisting expert attitudes in adversarial proceedings. Results confirmed the hypothesis that evaluator attitudes toward capital punishment influence willingness to accept capital case referrals from particular adversarial parties. Stronger death penalty opposition was associated with higher willingness to conduct evaluations

This survey of 206 forensic psychologists tested the “filtering” effects of preexisting expert attitudes in adversarial proceedings. Results confirmed the hypothesis that evaluator attitudes toward capital punishment influence willingness to accept capital case referrals from particular adversarial parties. Stronger death penalty opposition was associated with higher willingness to conduct evaluations for the defense and higher likelihood of rejecting referrals from all sources. Conversely, stronger support was associated with higher willingness to be involved in capital cases generally, regardless of referral source. The findings raise the specter of skewed evaluator involvement in capital evaluations, where evaluators willing to do capital casework may have stronger capital punishment support than evaluators who opt out, and evaluators with strong opposition may work selectively for the defense. The results may provide a partial explanation for the “allegiance effect” in adversarial legal settings such that preexisting attitudes may contribute to partisan participation through a self-selection process.

Created2016-04-28
128931-Thumbnail Image.png
Description

Multitrophic communities that maintain the functionality of the extreme Antarctic terrestrial ecosystems, while the simplest of any natural community, are still challenging our knowledge about the limits to life on earth. In this study, we describe and interpret the linkage between the diversity of different trophic level communities to the

Multitrophic communities that maintain the functionality of the extreme Antarctic terrestrial ecosystems, while the simplest of any natural community, are still challenging our knowledge about the limits to life on earth. In this study, we describe and interpret the linkage between the diversity of different trophic level communities to the geological morphology and soil geochemistry in the remote Transantarctic Mountains (Darwin Mountains, 80°S). We examined the distribution and diversity of biota (bacteria, cyanobacteria, lichens, algae, invertebrates) with respect to elevation, age of glacial drift sheets, and soil physicochemistry. Results showed an abiotic spatial gradient with respect to the diversity of the organisms across different trophic levels. More complex communities, in terms of trophic level diversity, were related to the weakly developed younger drifts (Hatherton and Britannia) with higher soil C/N ratio and lower total soluble salts content (thus lower conductivity). Our results indicate that an increase of ion concentration from younger to older drift regions drives a succession of complex to more simple communities, in terms of number of trophic levels and diversity within each group of organisms analysed. This study revealed that integrating diversity across multi-trophic levels of biotic communities with abiotic spatial heterogeneity and geological history is fundamental to understand environmental constraints influencing biological distribution in Antarctic soil ecosystems.

ContributorsMagalhaes, Catarina (Author) / Stevens, Mark I. (Author) / Cary, S. Craig (Author) / Ball, Becky (Author) / Storey, Bryan C. (Author) / Wall, Diana H. (Author) / Turk, Roman (Author) / Ruprecht, Ulrike (Author) / New College of Interdisciplinary Arts and Sciences (Contributor)
Created2012-09-19
128712-Thumbnail Image.png
Description

More has changed in journal publishing in the past twenty years than the previous four centuries. Digital technologies have transformed the submission, review, production and distribution of scholarly materials, with the result that there has been exponential growth in the number of papers published in an expanding roster of journals—some

More has changed in journal publishing in the past twenty years than the previous four centuries. Digital technologies have transformed the submission, review, production and distribution of scholarly materials, with the result that there has been exponential growth in the number of papers published in an expanding roster of journals—some are mainstream, some highly specialized, some are produced by publishers who have existed since printing began and others are produced by small groups with niche interests.

Created2015-10-12
128376-Thumbnail Image.png
Description

In order to determine the feasibility of utilizing novel rexinoids for chemotherapeutics and as potential treatments for neurological conditions, we undertook an assessment of the side effect profile of select rexinoid X receptor (RXR) analogs that we reported previously. We assessed pharmacokinetic profiles, lipid and thyroid-stimulating hormone (TSH) levels in

In order to determine the feasibility of utilizing novel rexinoids for chemotherapeutics and as potential treatments for neurological conditions, we undertook an assessment of the side effect profile of select rexinoid X receptor (RXR) analogs that we reported previously. We assessed pharmacokinetic profiles, lipid and thyroid-stimulating hormone (TSH) levels in rats, and cell culture activity of rexinoids in sterol regulatory element-binding protein (SREBP) induction and thyroid hormone inhibition assays. We also performed RNA sequencing of the brain tissues of rats that had been dosed with the compounds. We show here for the first time that potent rexinoid activity can be uncoupled from drastic lipid changes and thyroid axis variations, and we propose that rexinoids can be developed with improved side effect profiles than the parent compound, bexarotene (1).

ContributorsMarshall, Pamela (Author) / Jurutka, Peter (Author) / Wagner, Carl (Author) / van der Vaart, Arjan (Author) / Kaneko, Ichiro (Author) / Chavez, Pedro I. (Author) / Ma, Ning (Author) / Bhogal, Jaskaran (Author) / Shahani, Pritika (Author) / Swierski, Johnathon (Author) / MacNeill, Mairi (Author) / New College of Interdisciplinary Arts and Sciences (Contributor)
Created2015-03-16
128374-Thumbnail Image.png
Description

Given species inventories of all sites in a planning area, integer programming or heuristic algorithms can prioritize sites in terms of the site's complementary value, that is, the ability of the site to complement (add unrepresented species to) other sites prioritized for conservation. The utility of these procedures is limited

Given species inventories of all sites in a planning area, integer programming or heuristic algorithms can prioritize sites in terms of the site's complementary value, that is, the ability of the site to complement (add unrepresented species to) other sites prioritized for conservation. The utility of these procedures is limited because distributions of species are typically available only as coarse atlases or range maps, whereas conservation planners need to prioritize relatively small sites. If such coarse-resolution information can be used to identify small sites that efficiently represent species (i.e., downscaled), then such data can be useful for conservation planning. We develop and test a new type of surrogate for biodiversity, which we call downscaled complementarity. In this approach, complementarity values from large cells are downscaled to small cells, using statistical methods or simple map overlays. We illustrate our approach for birds in Spain by building models at coarse scale (50 × 50 km atlas of European birds, and global range maps of birds interpreted at the same 50 × 50 km grid size), using this model to predict complementary value for 10 × 10 km cells in Spain, and testing how well-prioritized cells represented bird distributions in an independent bird atlas of those 10 × 10 km cells. Downscaled complementarity was about 63–77% as effective as having full knowledge of the 10-km atlas data in its ability to improve on random selection of sites. Downscaled complementarity has relatively low data acquisition cost and meets representation goals well compared with other surrogates currently in use. Our study justifies additional tests to determine whether downscaled complementarity is an effective surrogate for other regions and taxa, and at spatial resolution finer than 10 × 10 km cells. Until such tests have been completed, we caution against assuming that any surrogate can reliably prioritize sites for species representation.

Created2016-05-18
128370-Thumbnail Image.png
Description

Lack of biodiversity data is a major impediment to prioritizing sites for species representation. Because comprehensive species data are not available in any planning area, planners often use surrogates (such as vegetation communities, or mapped occurrences of a well-inventoried taxon) to prioritize sites. We propose and demonstrate the effectiveness of

Lack of biodiversity data is a major impediment to prioritizing sites for species representation. Because comprehensive species data are not available in any planning area, planners often use surrogates (such as vegetation communities, or mapped occurrences of a well-inventoried taxon) to prioritize sites. We propose and demonstrate the effectiveness of predicted rarity-weighted richness (PRWR) as a surrogate in situations where species inventories may be available for a portion of the planning area. Use of PRWR as a surrogate involves several steps. First, rarity-weighted richness (RWR) is calculated from species inventories for a q% subset of sites. Then random forest models are used to model RWR as a function of freely available environmental variables for that q% subset. This function is then used to calculate PRWR for all sites (including those for which no species inventories are available), and PRWR is used to prioritize all sites. We tested PRWR on plant and bird datasets, using the species accumulation index to measure efficiency of PRWR. Sites with the highest PRWR represented species with median efficiency of 56% (range 32%–77% across six datasets) when q = 20%, and with median efficiency of 39% (range 20%–63%) when q = 10%. An efficiency of 56% means that selecting sites in order of PRWR rank was 56% as effective as having full knowledge of species distributions in PRWR's ability to improve on the number of species represented in the same number of randomly selected sites. Our results suggest that PRWR may be able to help prioritize sites to represent species if a planner has species inventories for 10%–20% of the sites in the planning area.

Created2016-10-27
128566-Thumbnail Image.png
Description

MALDI-TOF MS profiling has been shown to be a rapid and reliable method to characterize pure cultures of bacteria. Currently, there is keen interest in using this technique to identify bacteria in mixtures. Promising results have been reported with two- or three-isolate model systems using biomarker-based approaches. In this work,

MALDI-TOF MS profiling has been shown to be a rapid and reliable method to characterize pure cultures of bacteria. Currently, there is keen interest in using this technique to identify bacteria in mixtures. Promising results have been reported with two- or three-isolate model systems using biomarker-based approaches. In this work, we applied MALDI-TOF MS-based methods to a more complex model mixture containing six bacteria. We employed: 1) a biomarker-based approach that has previously been shown to be useful in identification of individual bacteria in pure cultures and simple mixtures and 2) a similarity coefficient-based approach that is routinely and nearly exclusively applied to identification of individual bacteria in pure cultures. Both strategies were developed and evaluated using blind-coded mixtures. With regard to the biomarker-based approach, results showed that most peaks in mixture spectra could be assigned to those found in spectra of each component bacterium; however, peaks shared by two isolates as well as peaks that could not be assigned to any individual component isolate were observed. For two-isolate blind-coded samples, bacteria were correctly identified using both similarity coefficient- and biomarker-based strategies, while for blind-coded samples containing more than two isolates, bacteria were more effectively identified using a biomarker-based strategy.

ContributorsZhang, Lin (Author) / Smart, Sonja (Author) / Sandrin, Todd (Author) / New College of Interdisciplinary Arts and Sciences (Contributor)
Created2015-11-05
128552-Thumbnail Image.png
Description

Cubic (space group: Fmm) iridium phosphide, Ir2P, has been synthesized at high pressure and high temperature. Angle-dispersive synchrotron X-ray diffraction measurements on Ir2P powder using a diamond-anvil cell at room temperature and high pressures (up to 40.6 GPa) yielded a bulk modulus of B[subscript 0] = 306(6) GPa and its pressure derivative B0′ = 6.4(5).

Cubic (space group: Fmm) iridium phosphide, Ir2P, has been synthesized at high pressure and high temperature. Angle-dispersive synchrotron X-ray diffraction measurements on Ir2P powder using a diamond-anvil cell at room temperature and high pressures (up to 40.6 GPa) yielded a bulk modulus of B[subscript 0] = 306(6) GPa and its pressure derivative B0′ = 6.4(5). Such a high bulk modulus attributed to the short and strongly covalent Ir-P bonds as revealed by first – principles calculations and three-dimensionally distributed [IrP4] tetrahedron network. Indentation testing on a well–sintered polycrystalline sample yielded the hardness of 11.8(4) GPa. Relatively low shear modulus of ~64 GPa from theoretical calculations suggests a complicated overall bonding in Ir2P with metallic, ionic, and covalent characteristics. In addition, a spin glass behavior is indicated by magnetic susceptibility measurements.

ContributorsWang, Pei (Author) / Wang, Yonggang (Author) / Wang, Liping (Author) / Zhang, Xinyu (Author) / Yu, Xiaohui (Author) / Zhu, Jinlong (Author) / Wang, Shanmin (Author) / Qin, Jiaqian (Author) / Leinenweber, Kurt (Author) / Chen, Haihua (Author) / He, Duanwei (Author) / Zhao, Yusheng (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2016-02-24
128446-Thumbnail Image.png
Description

Students often self-identify as visual learners and prefer to engage with a topic in an active, hands-on way. Indeed, much research has shown that students who actively engage with the material and are engrossed in the topics retain concepts better than students who are passive receivers of information. However, much

Students often self-identify as visual learners and prefer to engage with a topic in an active, hands-on way. Indeed, much research has shown that students who actively engage with the material and are engrossed in the topics retain concepts better than students who are passive receivers of information. However, much of learning life science concepts is still driven by books and static pictures. One concept students have a hard time grasping is how a linear chain of amino acids folds to becomes a 3D protein structure. Adding three dimensional activities to the topic of protein structure and function should allow for a deeper understanding of the primary, secondary, tertiary, and quaternary structure of proteins and how proteins function in a cell. Here, I review protein folding activities and describe using Apps and 3D visualization to enhance student understanding of protein structure.

Created2014-12