This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 11 - 20 of 58
Filtering by

Clear all filters

128911-Thumbnail Image.png
Description

MALDI-TOF MS has been shown capable of rapidly and accurately characterizing bacteria. Highly reproducible spectra are required to ensure reliable characterization. Prior work has shown that spectra acquired manually can have higher reproducibility than those acquired automatically. For this reason, the objective of this study was to optimize automated data

MALDI-TOF MS has been shown capable of rapidly and accurately characterizing bacteria. Highly reproducible spectra are required to ensure reliable characterization. Prior work has shown that spectra acquired manually can have higher reproducibility than those acquired automatically. For this reason, the objective of this study was to optimize automated data acquisition to yield spectra with reproducibility comparable to those acquired manually. Fractional factorial design was used to design experiments for robust optimization of settings, in which values of five parameters (peak selection mass range, signal to noise ratio (S:N), base peak intensity, minimum resolution and number of shots summed) commonly used to facilitate automated data acquisition were varied. Pseudomonas aeruginosa was used as a model bacterium in the designed experiments, and spectra were acquired using an intact cell sample preparation method. Optimum automated data acquisition settings (i.e., those settings yielding the highest reproducibility of replicate mass spectra) were obtained based on statistical analysis of spectra of P. aeruginosa. Finally, spectrum quality and reproducibility obtained from non-optimized and optimized automated data acquisition settings were compared for P. aeruginosa, as well as for two other bacteria, Klebsiella pneumoniae and Serratia marcescens. Results indicated that reproducibility increased from 90% to 97% (p-value [~ over =] 0.002) for P. aeruginosa when more shots were summed and, interestingly, decreased from 95% to 92% (p-value [~ over =] 0.013) with increased threshold minimum resolution. With regard to spectrum quality, highly reproducible spectra were more likely to have high spectrum quality as measured by several quality metrics, except for base peak resolution. Interaction plots suggest that, in cases of low threshold minimum resolution, high reproducibility can be achieved with fewer shots. Optimization yielded more reproducible spectra than non-optimized settings for all three bacteria.

ContributorsZhang, Lin (Author) / Borror, Connie (Author) / Sandrin, Todd (Author) / New College of Interdisciplinary Arts and Sciences (Contributor)
Created2014-03-24
128834-Thumbnail Image.png
Description

Introduction: The ketogenic diet (KD) is a high-fat, low-carbohydrate diet that alters metabolism by increasing the level of ketone bodies in the blood. KetoCal® (KC) is a nutritionally complete, commercially available 4∶1 (fat∶ carbohydrate+protein) ketogenic formula that is an effective non-pharmacologic treatment for the management of refractory pediatric epilepsy. Diet-induced ketosis

Introduction: The ketogenic diet (KD) is a high-fat, low-carbohydrate diet that alters metabolism by increasing the level of ketone bodies in the blood. KetoCal® (KC) is a nutritionally complete, commercially available 4∶1 (fat∶ carbohydrate+protein) ketogenic formula that is an effective non-pharmacologic treatment for the management of refractory pediatric epilepsy. Diet-induced ketosis causes changes to brain homeostasis that have potential for the treatment of other neurological diseases such as malignant gliomas.

Methods: We used an intracranial bioluminescent mouse model of malignant glioma. Following implantation animals were maintained on standard diet (SD) or KC. The mice received 2×4 Gy of whole brain radiation and tumor growth was followed by in vivo imaging.

Results: Animals fed KC had elevated levels of β-hydroxybutyrate (p = 0.0173) and an increased median survival of approximately 5 days relative to animals maintained on SD. KC plus radiation treatment were more than additive, and in 9 of 11 irradiated animals maintained on KC the bioluminescent signal from the tumor cells diminished below the level of detection (p<0.0001). Animals were switched to SD 101 days after implantation and no signs of tumor recurrence were seen for over 200 days.

Conclusions: KC significantly enhances the anti-tumor effect of radiation. This suggests that cellular metabolic alterations induced through KC may be useful as an adjuvant to the current standard of care for the treatment of human malignant gliomas.

ContributorsAbdelwahab, Mohammed G. (Author) / Fenton, Kathryn E. (Author) / Preul, Mark C. (Author) / Rho, Jong M. (Author) / Lynch, Andrew (Author) / Stafford, Phillip (Author) / Scheck, Adrienne C. (Author) / Biodesign Institute (Contributor)
Created2012-05-01
128852-Thumbnail Image.png
Description

Immunosignaturing shows promise as a general approach to diagnosis. It has been shown to detect immunological signs of infection early during the course of disease and to distinguish Alzheimer’s disease from healthy controls. Here we test whether immunosignatures correspond to clinical classifications of disease using samples from people with brain

Immunosignaturing shows promise as a general approach to diagnosis. It has been shown to detect immunological signs of infection early during the course of disease and to distinguish Alzheimer’s disease from healthy controls. Here we test whether immunosignatures correspond to clinical classifications of disease using samples from people with brain tumors. Blood samples from patients undergoing craniotomies for therapeutically naïve brain tumors with diagnoses of astrocytoma (23 samples), Glioblastoma multiforme (22 samples), mixed oligodendroglioma/astrocytoma (16 samples), oligodendroglioma (18 samples), and 34 otherwise healthy controls were tested by immunosignature. Because samples were taken prior to adjuvant therapy, they are unlikely to be perturbed by non-cancer related affects. The immunosignaturing platform distinguished not only brain cancer from controls, but also pathologically important features about the tumor including type, grade, and the presence or absence of O6-methyl-guanine-DNA methyltransferase methylation promoter (MGMT), an important biomarker that predicts response to temozolomide in Glioblastoma multiformae patients.

ContributorsHughes, Alexa (Author) / Cichacz, Zbigniew (Author) / Scheck, Adrienne (Author) / Coons, Stephen W. (Author) / Johnston, Stephen (Author) / Stafford, Phillip (Author) / Biodesign Institute (Contributor)
Created2012-07-16
128860-Thumbnail Image.png
Description

Aquatic vertebrates that emerge onto land to spawn, feed, or evade aquatic predators must return to the water to avoid dehydration or asphyxiation. How do such aquatic organisms determine their location on land? Do particular behaviors facilitate a safe return to the aquatic realm? In this study, we asked: will

Aquatic vertebrates that emerge onto land to spawn, feed, or evade aquatic predators must return to the water to avoid dehydration or asphyxiation. How do such aquatic organisms determine their location on land? Do particular behaviors facilitate a safe return to the aquatic realm? In this study, we asked: will fully-aquatic mosquitofish (Gambusia affinis) stranded on a slope modulate locomotor behavior according to body position to facilitate movement back into the water? To address this question, mosquitofish (n = 53) were placed in four positions relative to an artificial slope (30° inclination) and their responses to stranding were recorded, categorized, and quantified.

We found that mosquitofish may remain immobile for up to three minutes after being stranded and then initiate either a “roll” or a “leap”. During a roll, mass is destabilized to trigger a downslope tumble; during a leap, the fish jumps up, above the substrate. When mosquitofish are oriented with the long axis of the body at 90° to the slope, they almost always (97%) initiate a roll. A roll is an energetically inexpensive way to move back into the water from a cross-slope body orientation because potential energy is converted back into kinetic energy. When placed with their heads toward the apex of the slope, most mosquitofish (>50%) produce a tail-flip jump to leap into ballistic flight. Because a tail-flip generates a caudually-oriented flight trajectory, this locomotor movement will effectively propel a fish downhill when the head is oriented up-slope. However, because the mass of the body is elevated against gravity, leaps require more mechanical work than rolls. We suggest that mosquitofish use the otolith-vestibular system to sense body position and generate a behavior that is “matched” to their orientation on a slope, thereby increasing the probability of a safe return to the water, relative to the energy expended.

ContributorsBoumis, Robert J. (Author) / Ferry, Lara (Author) / Pace, Cinnamon M. (Author) / Gibb, Alice C. (Author) / New College of Interdisciplinary Arts and Sciences (Contributor)
Created2014-08-27
129012-Thumbnail Image.png
Description

Background: Malignant brain tumors affect people of all ages and are the second leading cause of cancer deaths in children. While current treatments are effective and improve survival, there remains a substantial need for more efficacious therapeutic modalities. The ketogenic diet (KD) - a high-fat, low-carbohydrate treatment for medically refractory epilepsy

Background: Malignant brain tumors affect people of all ages and are the second leading cause of cancer deaths in children. While current treatments are effective and improve survival, there remains a substantial need for more efficacious therapeutic modalities. The ketogenic diet (KD) - a high-fat, low-carbohydrate treatment for medically refractory epilepsy - has been suggested as an alternative strategy to inhibit tumor growth by altering intrinsic metabolism, especially by inducing glycopenia.

Methods: Here, we examined the effects of an experimental KD on a mouse model of glioma, and compared patterns of gene expression in tumors vs. normal brain from animals fed either a KD or a standard diet.

Results: Animals received intracranial injections of bioluminescent GL261-luc cells and tumor growth was followed in vivo. KD treatment significantly reduced the rate of tumor growth and prolonged survival. Further, the KD reduced reactive oxygen species (ROS) production in tumor cells. Gene expression profiling demonstrated that the KD induces an overall reversion to expression patterns seen in non-tumor specimens. Notably, genes involved in modulating ROS levels and oxidative stress were altered, including those encoding cyclooxygenase 2, glutathione peroxidases 3 and 7, and periredoxin 4.

Conclusions: Our data demonstrate that the KD improves survivability in our mouse model of glioma, and suggests that the mechanisms accounting for this protective effect likely involve complex alterations in cellular metabolism beyond simply a reduction in glucose.

ContributorsStafford, Phillip (Author) / Abdelwahab, Mohammed G. (Author) / Kim, Do Young (Author) / Preul, Mark C. (Author) / Rho, Jong M. (Author) / Scheck, Adrienne C. (Author) / Biodesign Institute (Contributor)
Created2010-09-10
128774-Thumbnail Image.png
Description

Vitamin D receptor (VDR) is a substrate for modification with small ubiquitin-like modifier (SUMO). To further assess the role of reversible SUMOylation within the vitamin D hormonal response, we evaluated the effects of sentrin/SUMO-specific proteases (SENPs) that can function to remove small ubiquitin-like modifier (SUMO) from target proteins upon the

Vitamin D receptor (VDR) is a substrate for modification with small ubiquitin-like modifier (SUMO). To further assess the role of reversible SUMOylation within the vitamin D hormonal response, we evaluated the effects of sentrin/SUMO-specific proteases (SENPs) that can function to remove small ubiquitin-like modifier (SUMO) from target proteins upon the activities of VDR and related receptors. We report that SENP1 and SENP2 strikingly potentiate ligand-mediated transactivation of VDR and also its heterodimeric partner, retinoid X receptor (RXRα) with depletion of cellular SENP1 significantly diminishing the hormonal responsiveness of the endogenous vitamin D target gene CYP24A1. We find that SENP-directed modulation of VDR activity is cell line-dependent, achieving potent modulatory effects in Caco-2 and HEK-293 cells, while in MCF-7 cells the vitamin D signal is unaffected by any tested SENP. In support of their function as novel modulators of the vitamin D hormonal pathway we demonstrate that both SENP1 and SENP2 can interact with VDR and reverse its modification with SUMO2. In a preliminary analysis we identify lysine 91, a residue known to be critical for formation and DNA binding of the VDR-RXR heterodimer, as a minor SUMO acceptor site within VDR. In combination, our results support a repressor function for SUMOylation of VDR and reveal SENPs as a novel class of VDR/RXR co-regulatory protein that significantly modulate the vitamin D response and which could also have important impact upon the functionality of both RXR-containing homo and heterodimers.

ContributorsLee, Wai-Ping (Author) / Jena, Sarita (Author) / Doherty, Declan (Author) / Ventakesh, Jaganathan (Author) / Schimdt, Joachim (Author) / Furmick, Julie (Author) / Widener, Tim (Author) / Lemau, Jana (Author) / Jurutka, Peter (Author) / Thompson, Paul D. (Author) / New College of Interdisciplinary Arts and Sciences (Contributor)
Created2014-02-20
128307-Thumbnail Image.png
Description

Astaxanthin (3,3′-dihydroxy-β,β-carotene-4,4′-dione), a high-value ketocarotenoid with a broad range of applications in food, feed, nutraceutical, and pharmaceutical industries, has been gaining great attention from science and the public in recent years. The green microalgae Haematococcus pluvialis and Chlorella zofingiensis represent the most promising producers of natural astaxanthin. Although H. pluvialis

Astaxanthin (3,3′-dihydroxy-β,β-carotene-4,4′-dione), a high-value ketocarotenoid with a broad range of applications in food, feed, nutraceutical, and pharmaceutical industries, has been gaining great attention from science and the public in recent years. The green microalgae Haematococcus pluvialis and Chlorella zofingiensis represent the most promising producers of natural astaxanthin. Although H. pluvialis possesses the highest intracellular astaxanthin content and is now believed to be a good producer of astaxanthin, it has intrinsic shortcomings such as slow growth rate, low biomass yield, and a high light requirement. In contrast, C. zofingiensis grows fast phototrophically, heterotrophically and mixtrophically, is easy to be cultured and scaled up both indoors and outdoors, and can achieve ultrahigh cell densities. These robust biotechnological traits provide C. zofingiensis with high potential to be a better organism than H. pluvialis for mass astaxanthin production. This review aims to provide an overview of the biology and industrial potential of C. zofingiensis as an alternative astaxanthin producer. The path forward for further expansion of the astaxanthin production from C. zofingiensis with respect to both challenges and opportunities is also discussed.

ContributorsLiu, Jin (Author) / Sun, Zheng (Author) / Gerken, Henri (Author) / Liu, Zheng (Author) / Jiang, Yue (Author) / Chen, Feng (Author) / New College of Interdisciplinary Arts and Sciences (Contributor)
Created2014-06-10
128123-Thumbnail Image.png
Description

Astronauts are exposed to a unique combination of stressors during spaceflight, which leads to alterations in their physiology and potentially increases their susceptibility to disease, including infectious diseases. To evaluate the potential impact of the spaceflight environment on the regulation of molecular pathways mediating cellular stress responses, we performed a

Astronauts are exposed to a unique combination of stressors during spaceflight, which leads to alterations in their physiology and potentially increases their susceptibility to disease, including infectious diseases. To evaluate the potential impact of the spaceflight environment on the regulation of molecular pathways mediating cellular stress responses, we performed a first-of-its-kind pilot study to assess spaceflight-related gene-expression changes in the whole blood of astronauts. Using an array comprised of 234 well-characterized stress-response genes, we profiled transcriptomic changes in six astronauts (four men and two women) from blood preserved before and immediately following the spaceflight. Differentially regulated transcripts included those important for DNA repair, oxidative stress, and protein folding/degradation, including HSP90AB1, HSP27, GPX1, XRCC1, BAG-1, HHR23A, FAP48, and C-FOS. No gender-specific differences or relationship to number of missions flown was observed. This study provides a first assessment of transcriptomic changes occurring in the whole blood of astronauts in response to spaceflight.

ContributorsBarrila, Jennifer (Author) / Ott, C. Mark (Author) / LeBlanc, Carly (Author) / Mehta, Satish K. (Author) / Crabbe, Aurelie (Author) / Stafford, Phillip (Author) / Pierson, Duane L. (Author) / Nickerson, Cheryl (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor)
Created2016-12-08
128194-Thumbnail Image.png
Description

There is an increasing awareness that health care must move from post-symptomatic treatment to presymptomatic intervention. An ideal system would allow regular inexpensive monitoring of health status using circulating antibodies to report on health fluctuations. Recently, we demonstrated that peptide microarrays can do this through antibody signatures (immunosignatures). Unfortunately, printed

There is an increasing awareness that health care must move from post-symptomatic treatment to presymptomatic intervention. An ideal system would allow regular inexpensive monitoring of health status using circulating antibodies to report on health fluctuations. Recently, we demonstrated that peptide microarrays can do this through antibody signatures (immunosignatures). Unfortunately, printed microarrays are not scalable. Here we demonstrate a platform based on fabricating microarrays (~10 M peptides per slide, 330,000 peptides per assay) on silicon wafers using equipment common to semiconductor manufacturing. The potential of these microarrays for comprehensive health monitoring is verified through the simultaneous detection and classification of six different infectious diseases and six different cancers. Besides diagnostics, these high-density peptide chips have numerous other applications both in health care and elsewhere.

ContributorsLegutki, Joseph Barten (Author) / Zhao, Zhan-Gong (Author) / Greving, Matt (Author) / Woodbury, Neal (Author) / Johnston, Stephen (Author) / Stafford, Phillip (Author) / Biodesign Institute (Contributor)
Created2014-09-03
128363-Thumbnail Image.png
Description

This study investigates the presence of dynamical patterns of interpersonal coordination in extended deceptive conversations across multimodal channels of behavior. Using a novel "devil’s advocate" paradigm, we experimentally elicited deception and truth across topics in which conversational partners either agreed or disagreed, and where one partner was surreptitiously asked to

This study investigates the presence of dynamical patterns of interpersonal coordination in extended deceptive conversations across multimodal channels of behavior. Using a novel "devil’s advocate" paradigm, we experimentally elicited deception and truth across topics in which conversational partners either agreed or disagreed, and where one partner was surreptitiously asked to argue an opinion opposite of what he or she really believed. We focus on interpersonal coordination as an emergent behavioral signal that captures interdependencies between conversational partners, both as the coupling of head movements over the span of milliseconds, measured via a windowed lagged cross correlation (WLCC) technique, and more global temporal dependencies across speech rate, using cross recurrence quantification analysis (CRQA). Moreover, we considered how interpersonal coordination might be shaped by strategic, adaptive conversational goals associated with deception. We found that deceptive conversations displayed more structured speech rate and higher head movement coordination, the latter with a peak in deceptive disagreement conversations. Together the results allow us to posit an adaptive account, whereby interpersonal coordination is not beholden to any single functional explanation, but can strategically adapt to diverse conversational demands.

Created2017-06-02