This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 41 - 46 of 46
Filtering by

Clear all filters

129459-Thumbnail Image.png
Description

Background: The cytokine MIF (Macrophage Migration Inhibitory Factor) has diverse physiological roles and is present at elevated concentrations in numerous disease states. However, its molecular heterogeneity has not been previously investigated in biological samples. Mass Spectrometric Immunoassay (MSIA) may help elucidate MIF post-translational modifications existing in vivo and provide additional clarity

Background: The cytokine MIF (Macrophage Migration Inhibitory Factor) has diverse physiological roles and is present at elevated concentrations in numerous disease states. However, its molecular heterogeneity has not been previously investigated in biological samples. Mass Spectrometric Immunoassay (MSIA) may help elucidate MIF post-translational modifications existing in vivo and provide additional clarity regarding its relationship to diverse pathologies.

Results: In this work, we have developed and validated a fully quantitative MSIA assay for MIF, and used it in the discovery and quantification of different proteoforms of MIF in serum samples, including cysteinylated and glycated MIF. The MSIA assay had a linear range of 1.56-50 ng/mL, and exhibited good precision, linearity, and recovery characteristics. The new assay was applied to a small cohort of human serum samples, and benchmarked against an MIF ELISA assay.

Conclusions: The quantitative MIF MSIA assay provides a sensitive, precise and high throughput method to delineate and quantify MIF proteoforms in biological samples.

ContributorsSherma, Nisha (Author) / Borges, Chad (Author) / Trenchevska, Olgica (Author) / Jarvis, Jason W. (Author) / Rehder, Douglas (Author) / Oran, Paul (Author) / Nelson, Randall (Author) / Nedelkov, Dobrin (Author) / Biodesign Institute (Contributor)
Created2014-10-14
129124-Thumbnail Image.png
Description

For more than 80 years, Proconsul has held a pivotal position in interpretations of catarrhine evolution in East Africa. From early hypotheses of phyletic relationships with modern apes to more recent debates over their position within Hominoidea, the well-preserved fossils of this genus have been a foundation for most evolutionary

For more than 80 years, Proconsul has held a pivotal position in interpretations of catarrhine evolution in East Africa. From early hypotheses of phyletic relationships with modern apes to more recent debates over their position within Hominoidea, the well-preserved fossils of this genus have been a foundation for most evolutionary scenarios regarding the early diversification of hominoids. The majority of what we "know" about Proconsul, however, derives from abundant younger fossils found at the Kisingiri localities on Rusinga and Mfangano Islands rather than from the smaller samples found at Koru – the locality of the type species, Proconsul africanus – and other Tinderet deposits. One outcome of this is seen in recent attempts to expand the genus "Ugandapithecus" (considered here a junior subjective synonym of Proconsul), wherein much of the Tinderet sample was referred to that genus based primarily on differentiating it from the Kisingiri specimens rather than from the type species, P. africanus. This and other recent taxonomic revisions to Proconsul prompted us to undertake a systematic review of dentognathic specimens attributed to this taxon. Results of our study underscore and extend the substantive distinction of Tinderet and Ugandan Proconsul (i.e., Proconsul sensu stricto) from the Kisingiri fossils, the latter recognized here as a new genus. Specimens of the new genus are readily distinguished from Proconsul sensu stricto by morphology preserved in the P. africanus holotype, M 14084, but also in I1s, lower incisors, upper and lower canines, and especially mandibular characteristics. A number of these differences are more advanced among Kisingiri specimens in the direction of crown hominoids. Proconsul sensu stricto is characterized by a suite of unique features that strongly unite the included species as a clade. There have been decades of contentious debate over the phylogenetic placement of Proconsul (sensu lato), due in part to there being a mixture of primitive and more advanced morphology within the single genus. By recognizing two distinct clades that, in large part, segregate these character states, we believe that better phylogenetic resolution can be achieved.

ContributorsMcNulty, Kieran P. (Author) / Begun, David R. (Author) / Kelley, Jay (Author) / Manthi, Fredrick K. (Author) / Mbua, Emma N. (Author) / School of Human Evolution and Social Change (Contributor)
Created2015-07-01
129120-Thumbnail Image.png
Description

Background: Ebola is one of the most virulent human viral diseases, with a case fatality ratio between 25% to 90%. The 2014 West African outbreaks are the largest and worst in history. There is no specific treatment or effective/safe vaccine against the disease. Hence, control efforts are restricted to basic

Background: Ebola is one of the most virulent human viral diseases, with a case fatality ratio between 25% to 90%. The 2014 West African outbreaks are the largest and worst in history. There is no specific treatment or effective/safe vaccine against the disease. Hence, control efforts are restricted to basic public health preventive (non-pharmaceutical) measures. Such efforts are undermined by traditional/cultural belief systems and customs, characterized by general mistrust and skepticism against government efforts to combat the disease. This study assesses the roles of traditional customs and public healthcare systems on the disease spread.

Methods: A mathematical model is designed and used to assess population-level impact of basic non-pharmaceutical control measures on the 2014 Ebola outbreaks. The model incorporates the effects of traditional belief systems and customs, along with disease transmission within health-care settings and by Ebola-deceased individuals. A sensitivity analysis is performed to determine model parameters that most affect disease transmission. The model is parameterized using data from Guinea, one of the three Ebola-stricken countries. Numerical simulations are performed and the parameters that drive disease transmission, with or without basic public health control measures, determined. Three effectiveness levels of such basic measures are considered.

Results: The distribution of the basic reproduction number (R0) for Guinea (in the absence of basic control measures) is such that R 0 ∈ [0.77,1.35], for the case when the belief systems do not result in more unreported Ebola cases. When such systems inhibit control efforts, the distribution increases to R 0 ∈ [1.15,2.05]. The total Ebola cases are contributed by Ebola-deceased individuals (22%), symptomatic individuals in the early (33%) and latter (45%) infection stages. A significant reduction of new Ebola cases can be achieved by increasing health-care workers’ daily shifts from 8 to 24 hours, limiting hospital visitation to 1 hour and educating the populace to abandon detrimental traditional/cultural belief systems.

Conclusions: The 2014 outbreaks are controllable using a moderately-effective basic public health intervention strategy alone. A much higher (>50%) disease burden would have been recorded in the absence of such intervention.

Created2015-04-23
129096-Thumbnail Image.png
Description

Background: Cystatin C (CysC) is an endogenous cysteine protease inhibitor that can be used to assess the progression of kidney function. Recent studies demonstrate that CysC is a more specific indicator of glomerular filtration rate (GFR) than creatinine. CysC in plasma exists in multiple proteoforms. The goal of this study was

Background: Cystatin C (CysC) is an endogenous cysteine protease inhibitor that can be used to assess the progression of kidney function. Recent studies demonstrate that CysC is a more specific indicator of glomerular filtration rate (GFR) than creatinine. CysC in plasma exists in multiple proteoforms. The goal of this study was to clarify the association of native CysC, CysC missing N-terminal Serine (CysC des-S), and CysC without three N-terminal residues (CysC des-SSP) with diabetic chronic kidney disease (CKD).

Results: Using mass spectrometric immunoassay, the plasma concentrations of native CysC and the two CysC truncation proteoforms were examined in 111 individuals from three groups: 33 non-diabetic controls, 34 participants with type 2 diabetes (DM) and without CKD and 44 participants with diabetic CKD. Native CysC concentrations were 1.4 fold greater in CKD compared to DM group (p = 0.02) and 1.5 fold greater in CKD compared to the control group (p = 0.001). CysC des-S concentrations were 1.55 fold greater in CKD compared to the DM group (p = 0.002) and 1.9 fold greater in CKD compared to the control group (p = 0.0002). CysC des-SSP concentrations were 1.8 fold greater in CKD compared to the DM group (p = 0.008) and 1.52 fold greater in CKD compared to the control group (p = 0.002). In addition, the concentrations of CysC proteoforms were greater in the setting of albuminuria. The truncated CysC proteoform concentrations were associated with estimated GFR independent of native CysC concentrations.

Conclusion: Our findings demonstrate a greater amount of CysC proteoforms in diabetic CKD. We therefore suggest assessing the role of cystatin C proteoforms in the progression of CKD.

ContributorsYassine, Hussein N. (Author) / Trenchevska, Olgica (Author) / Dong, Zhiwei (Author) / Bashawri, Yara (Author) / Koska, Juraj (Author) / Reaven, Peter D. (Author) / Nelson, Randall (Author) / Nedelkov, Dobrin (Author) / Biodesign Institute (Contributor)
Created2016-03-25
129094-Thumbnail Image.png
Description

Background:
Pandemic influenza is said to 'shift mortality' to younger age groups; but also to spare a subpopulation of the elderly population. Does one of these effects dominate? Might this have important ramifications?

Methods: We estimated age-specific excess mortality rates for all-years for which data were available in the 20th century for Australia,

Background:
Pandemic influenza is said to 'shift mortality' to younger age groups; but also to spare a subpopulation of the elderly population. Does one of these effects dominate? Might this have important ramifications?

Methods: We estimated age-specific excess mortality rates for all-years for which data were available in the 20th century for Australia, Canada, France, Japan, the UK, and the USA for people older than 44 years of age. We modeled variation with age, and standardized estimates to allow direct comparison across age groups and countries. Attack rate data for four pandemics were assembled.

Results: For nearly all seasons, an exponential model characterized mortality data extremely well. For seasons of emergence and a variable number of seasons following, however, a subpopulation above a threshold age invariably enjoyed reduced mortality. 'Immune escape', a stepwise increase in mortality among the oldest elderly, was observed a number of seasons after both the A(H2N2) and A(H3N2) pandemics. The number of seasons from emergence to escape varied by country. For the latter pandemic, mortality rates in four countries increased for younger age groups but only in the season following that of emergence. Adaptation to both emergent viruses was apparent as a progressive decrease in mortality rates, which, with two exceptions, was seen only in younger age groups. Pandemic attack rate variation with age was estimated to be similar across four pandemics with very different mortality impact.

Conclusions: In all influenza pandemics of the 20th century, emergent viruses resembled those that had circulated previously within the lifespan of then-living people. Such individuals were relatively immune to the emergent strain, but this immunity waned with mutation of the emergent virus. An immune subpopulation complicates and may invalidate vaccine trials. Pandemic influenza does not 'shift' mortality to younger age groups; rather, the mortality level is reset by the virulence of the emerging virus and is moderated by immunity of past experience. In this study, we found that after immune escape, older age groups showed no further mortality reduction, despite their being the principal target of conventional influenza vaccines. Vaccines incorporating variants of pandemic viruses seem to provide little benefit to those previously immune. If attack rates truly are similar across pandemics, it must be the case that immunity to the pandemic virus does not prevent infection, but only mitigates the consequences.

Created2012-12-12
129155-Thumbnail Image.png
Description

The impetus for discovery and evaluation of protein biomarkers has been accelerated by recent development of advanced technologies for rapid and broad proteome analyses. Mass spectrometry (MS)-based protein assays hold great potential for in vitro biomarker studies. Described here is the development of a multiplex mass spectrometric immunoassay (MSIA) for

The impetus for discovery and evaluation of protein biomarkers has been accelerated by recent development of advanced technologies for rapid and broad proteome analyses. Mass spectrometry (MS)-based protein assays hold great potential for in vitro biomarker studies. Described here is the development of a multiplex mass spectrometric immunoassay (MSIA) for quantification of apolipoprotein C-I (apoC-I), apolipoprotein C-II (apoC-II), apolipoprotein C-III (apoC-III) and their proteoforms. The multiplex MSIA assay was fast (∼40 min) and high-throughput (96 samples at a time). The assay was applied to a small cohort of human plasma samples, revealing the existence of multiple proteoforms for each apolipoprotein C. The quantitative aspect of the assay enabled determination of the concentration for each proteoform individually. Low-abundance proteoforms, such as fucosylated apoC-III, were detected in less than 20% of the samples. The distribution of apoC-III proteoforms varied among samples with similar total apoC-III concentrations. The multiplex analysis of the three apolipoproteins C and their proteoforms using quantitative MSIA represents a significant step forward toward better understanding of their physiological roles in health and disease.

ContributorsTrenchevska, Olgica (Author) / Schaab, Matthew (Author) / Nelson, Randall (Author) / Nedelkov, Dobrin (Author) / Biodesign Institute (Contributor)
Created2015-06-15