This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 29
Filtering by

Clear all filters

Description

Two classes of scaling behaviours, namely the super-linear scaling of links or activities, and the sub-linear scaling of area, diversity, or time elapsed with respect to size have been found to prevail in the growth of complex networked systems. Despite some pioneering modelling approaches proposed for specific systems, whether there

Two classes of scaling behaviours, namely the super-linear scaling of links or activities, and the sub-linear scaling of area, diversity, or time elapsed with respect to size have been found to prevail in the growth of complex networked systems. Despite some pioneering modelling approaches proposed for specific systems, whether there exists some general mechanisms that account for the origins of such scaling behaviours in different contexts, especially in socioeconomic systems, remains an open question. We address this problem by introducing a geometric network model without free parameter, finding that both super-linear and sub-linear scaling behaviours can be simultaneously reproduced and that the scaling exponents are exclusively determined by the dimension of the Euclidean space in which the network is embedded. We implement some realistic extensions to the basic model to offer more accurate predictions for cities of various scaling behaviours and the Zipf distribution reported in the literature and observed in our empirical studies. All of the empirical results can be precisely recovered by our model with analytical predictions of all major properties. By virtue of these general findings concerning scaling behaviour, our models with simple mechanisms gain new insights into the evolution and development of complex networked systems.

ContributorsZhang, Jiang (Author) / Li, Xintong (Author) / Wang, Xinran (Author) / Wang, Wen-Xu (Author) / Wu, Lingfei (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-04-29
129317-Thumbnail Image.png
Description

The development of non-volatile logic through direct coupling of spontaneous ferroelectric polarization with semiconductor charge carriers is nontrivial, with many issues, including epitaxial ferroelectric growth, demonstration of ferroelectric switching and measurable semiconductor modulation. Here we report a true ferroelectric field effect—carrier density modulation in an underlying Ge(001) substrate by switching

The development of non-volatile logic through direct coupling of spontaneous ferroelectric polarization with semiconductor charge carriers is nontrivial, with many issues, including epitaxial ferroelectric growth, demonstration of ferroelectric switching and measurable semiconductor modulation. Here we report a true ferroelectric field effect—carrier density modulation in an underlying Ge(001) substrate by switching of the ferroelectric polarization in epitaxial c-axis-oriented BaTiO3 grown by molecular beam epitaxy. Using the density functional theory, we demonstrate that switching of BaTiO3 polarization results in a large electric potential change in Ge. Aberration-corrected electron microscopy confirms BaTiO3 tetragonality and the absence of any low-permittivity interlayer at the interface with Ge. The non-volatile, switchable nature of the single-domain out-of-plane ferroelectric polarization of BaTiO3 is confirmed using piezoelectric force microscopy. The effect of the polarization switching on the conductivity of the underlying Ge is measured using microwave impedance microscopy, clearly demonstrating a ferroelectric field effect.

ContributorsPonath, Patrick (Author) / Fredrickson, Kurt (Author) / Posadas, Agham B. (Author) / Ren, Yuan (Author) / Wu, Xiaoyu (Author) / Vasudevan, Rama K. (Author) / Okatan, M. Baris (Author) / Jesse, S. (Author) / Aoki, Toshihiro (Author) / McCartney, Martha (Author) / Smith, David (Author) / Kalinin, Sergei V. (Author) / Lai, Keji (Author) / Demkov, Alexander A. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-01
129253-Thumbnail Image.png
Description

In this paper, we report on the highly conductive layer formed at the crystalline γ-alumina/SrTiO3 interface, which is attributed to oxygen vacancies. We describe the structure of thin γ-alumina layers deposited by molecular beam epitaxy on SrTiO3 (001) at growth temperatures in the range of 400–800 °C, as determined by reflection-high-energy

In this paper, we report on the highly conductive layer formed at the crystalline γ-alumina/SrTiO3 interface, which is attributed to oxygen vacancies. We describe the structure of thin γ-alumina layers deposited by molecular beam epitaxy on SrTiO3 (001) at growth temperatures in the range of 400–800 °C, as determined by reflection-high-energy electron diffraction, x-ray diffraction, and high-resolution electron microscopy. In situ x-ray photoelectron spectroscopy was used to confirm the presence of the oxygen-deficient layer. Electrical characterization indicates sheet carrier densities of ∼1013 cm−2 at room temperature for the sample deposited at 700 °C, with a maximum electron Hall mobility of 3100 cm2V-1s-1 at 3.2 K and room temperature mobility of 22 cm2V-1s-1. Annealing in oxygen is found to reduce the carrier density and turn a conductive sample into an insulator.

ContributorsKormondy, Kristy J. (Author) / Posadas, Agham B. (Author) / Ngo, Thong Q. (Author) / Lu, Sirong (Author) / Goble, Nicholas (Author) / Jordan-Sweet, Jean (Author) / Gao, Xuan P. A. (Author) / Smith, David (Author) / McCartney, Martha (Author) / Ekerdt, John G. (Author) / Demkov, Alexander A. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-03-07
129636-Thumbnail Image.png
Description

This paper reports the molecular beam epitaxial growth and characterization of high-reflectivity and broad-bandwidth distributed Bragg reflectors (DBRs) made of ZnTe/GaSb quarter-wavelength (lambda/4) layers for optoelectronic applications in the midwave infrared spectral range (2-5 mu m). A series of ZnTe/GaSb DBRs has been successfully grown on GaSb (001) substrates using

This paper reports the molecular beam epitaxial growth and characterization of high-reflectivity and broad-bandwidth distributed Bragg reflectors (DBRs) made of ZnTe/GaSb quarter-wavelength (lambda/4) layers for optoelectronic applications in the midwave infrared spectral range (2-5 mu m). A series of ZnTe/GaSb DBRs has been successfully grown on GaSb (001) substrates using molecular beam epitaxy (MBE). During the MBE growth, a temperature ramp was applied to the initial growth of GaSb layers on ZnTe to protect the ZnTe underneath from damage due to thermal evaporation. Post-growth characterization using high-resolution x-ray diffraction, atomic force microscopy, and transmission electron microscopy reveals smooth surface morphology, low defect density, and coherent interfaces. Reflectance spectroscopy results show that a DBR sample of seven lambda/4 pairs has a peak reflectance as high as 99.0% centered at 2.56 mu m with a bandwidth of 517 nm.

ContributorsFan, Jin (Author) / Liu, Xinyu (Author) / Ouyang, Lu (Author) / Pimpinella, Richard E. (Author) / Dobrowolska, Margaret (Author) / Furdyna, Jacek K. (Author) / Smith, David (Author) / Zhang, Yong-Hang (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2013-10-28
128663-Thumbnail Image.png
Description

The urban heat island (UHI) phenomenon is a significant worldwide problem caused by rapid population growth and associated urbanization. The UHI effect exacerbates heat waves during the summer, increases energy and water consumption, and causes the high risk of heat-related morbidity and mortality. UHI mitigation efforts have increasingly relied on

The urban heat island (UHI) phenomenon is a significant worldwide problem caused by rapid population growth and associated urbanization. The UHI effect exacerbates heat waves during the summer, increases energy and water consumption, and causes the high risk of heat-related morbidity and mortality. UHI mitigation efforts have increasingly relied on wisely designing the urban residential environment such as using high albedo rooftops, green rooftops, and planting trees and shrubs to provide canopy coverage and shading. Thus, strategically designed residential rooftops and their surrounding landscaping have the potential to translate into significant energy, long-term cost savings, and health benefits. Rooftop albedo, material, color, area, slope, height, aspect and nearby landscaping are factors that potentially contribute. To extract, derive, and analyze these rooftop parameters and outdoor landscaping information, high resolution optical satellite imagery, LIDAR (light detection and ranging) point clouds and thermal imagery are necessary. Using data from the City of Tempe AZ (a 2010 population of 160,000 people), we extracted residential rooftop footprints and rooftop configuration parameters from airborne LIDAR point clouds and QuickBird satellite imagery (2.4 m spatial resolution imagery). Those parameters were analyzed against surface temperature data from the MODIS/ASTER airborne simulator (MASTER). MASTER images provided fine resolution (7 m) surface temperature data for residential areas during daytime and night time. Utilizing these data, ordinary least squares (OLS) regression was used to evaluate the relationships between residential building rooftops and their surface temperature in urban environment. The results showed that daytime rooftop temperature was closely related to rooftop spectral attributes, aspect, slope, and surrounding trees. Night time temperature was only influenced by rooftop spectral attributes and slope.

ContributorsZhao, Qunshan (Author) / Myint, Soe (Author) / Wentz, Elizabeth (Author) / Fan, Chao (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-09-18
128657-Thumbnail Image.png
Description

This study examines the spatial and temporal patterns of the surface urban heat island (SUHI) intensity in the Phoenix metropolitan area and the relationship with land use land cover (LULC) change between 2000 and 2014. The objective is to identify specific regions in Phoenix that have been increasingly heated and

This study examines the spatial and temporal patterns of the surface urban heat island (SUHI) intensity in the Phoenix metropolitan area and the relationship with land use land cover (LULC) change between 2000 and 2014. The objective is to identify specific regions in Phoenix that have been increasingly heated and cooled to further understand how LULC change influences the SUHI intensity. The data employed include MODerate-resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) 8-day composite June imagery, and classified LULC maps generated using 2000 and 2014 Landsat imagery. Results show that the regions that experienced the most significant LST changes during the study period are primarily on the outskirts of the Phoenix metropolitan area for both daytime and nighttime. The conversion to urban, residential, and impervious surfaces from all other LULC types has been identified as the primary cause of the UHI effect in Phoenix. Vegetation cover has been shown to significantly lower LST for both daytime and nighttime due to its strong cooling effect by producing more latent heat flux and less sensible heat flux. We suggest that urban planners, decision-makers, and city managers formulate new policies and regulations that encourage residential, commercial, and industrial developers to include more vegetation when planning new construction.

ContributorsWang, Chuyuan (Author) / Myint, Soe (Author) / Wang, Zhi-Hua (Author) / Song, Jiyun (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-02-26
128653-Thumbnail Image.png
Description

This paper reviews how remotely sensed data have been used to understand the impact of urbanization on global environmental change. We describe how these studies can support the policy and science communities’ increasing need for detailed and up-to-date information on the multiple dimensions of cities, including their social, biological, physical,

This paper reviews how remotely sensed data have been used to understand the impact of urbanization on global environmental change. We describe how these studies can support the policy and science communities’ increasing need for detailed and up-to-date information on the multiple dimensions of cities, including their social, biological, physical, and infrastructural characteristics. Because the interactions between urban and surrounding areas are complex, a synoptic and spatial view offered from remote sensing is integral to measuring, modeling, and understanding these relationships. Here we focus on three themes in urban remote sensing science: mapping, indices, and modeling. For mapping we describe the data sources, methods, and limitations of mapping urban boundaries, land use and land cover, population, temperature, and air quality. Second, we described how spectral information is manipulated to create comparative biophysical, social, and spatial indices of the urban environment. Finally, we focus how the mapped information and indices are used as inputs or parameters in models that measure changes in climate, hydrology, land use, and economics.

ContributorsWentz, Elizabeth (Author) / Anderson, Sharolyn (Author) / Fragkias, Michail (Author) / Netzband, Maik (Author) / Mesev, Victor (Author) / Myint, Soe (Author) / Quattrochi, Dale (Author) / Rahman, Atiqur (Author) / Seto, Karen C. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-04-30
128710-Thumbnail Image.png
Description

Deforestation in Myanmar has recently attracted much attention worldwide. This study examined spatio-temporal patterns of deforestation and forest carbon flux in Myanmar from 2001 to 2010 and environmental impacts at the regional scale using land products of the Moderate Resolution Imaging Spectroradiometer (MODIS). The results suggest that the total deforestation

Deforestation in Myanmar has recently attracted much attention worldwide. This study examined spatio-temporal patterns of deforestation and forest carbon flux in Myanmar from 2001 to 2010 and environmental impacts at the regional scale using land products of the Moderate Resolution Imaging Spectroradiometer (MODIS). The results suggest that the total deforestation area in Myanmar was 21,178.8 km2, with an annual deforestation rate of 0.81%, and that the total forest carbon release was 20.06 million tons, with an annual rate of 0.37%. Mangrove forests had the highest deforestation and carbon release rates, and deciduous forests had both the largest deforestation area and largest amount of carbon release. During the study period, the south and southwestern regions of Myanmar, especially Ayeyarwady and Rakhine, were deforestation hotspots (i.e., the highest deforestation and carbon release rates occurred in these regions). Deforestation caused significant carbon release, reduced evapotranspiration (ET), and increased land surface temperatures (LSTs) in deforested areas in Myanmar during the study period. Constructive policy recommendations are put forward based on these research results.

ContributorsWang, Chuyuan (Author) / Myint, Soe (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-09-02
129431-Thumbnail Image.png
Description

We report a study of the magnetic domain structure of nanocrystalline thin films of nickel-zinc ferrite. The ferrite films were synthesized using aqueous spin-spray coating at low temperature (∼90 °C) and showed high complex permeability in the GHz range. Electron microscopy and microanalysis revealed that the films consisted of columnar grains

We report a study of the magnetic domain structure of nanocrystalline thin films of nickel-zinc ferrite. The ferrite films were synthesized using aqueous spin-spray coating at low temperature (∼90 °C) and showed high complex permeability in the GHz range. Electron microscopy and microanalysis revealed that the films consisted of columnar grains with uniform chemical composition. Off-axis electron holography combined with magnetic force microscopy indicated a multi-grain domain structure with in-plane magnetization. The correlation between the magnetic domain morphology and crystal structure is briefly discussed.

ContributorsZhang, D. (Author) / Ray, N. M. (Author) / Petuskey, William (Author) / Smith, David (Author) / McCartney, Martha (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-08-28
128391-Thumbnail Image.png
Description

Given a complex geospatial network with nodes distributed in a two-dimensional region of physical space, can the locations of the nodes be determined and their connection patterns be uncovered based solely on data? We consider the realistic situation where time series/signals can be collected from a single location. A key

Given a complex geospatial network with nodes distributed in a two-dimensional region of physical space, can the locations of the nodes be determined and their connection patterns be uncovered based solely on data? We consider the realistic situation where time series/signals can be collected from a single location. A key challenge is that the signals collected are necessarily time delayed, due to the varying physical distances from the nodes to the data collection centre. To meet this challenge, we develop a compressive-sensing-based approach enabling reconstruction of the full topology of the underlying geospatial network and more importantly, accurate estimate of the time delays. A standard triangularization algorithm can then be employed to find the physical locations of the nodes in the network. We further demonstrate successful detection of a hidden node (or a hidden source or threat), from which no signal can be obtained, through accurate detection of all its neighbouring nodes. As a geospatial network has the feature that a node tends to connect with geophysically nearby nodes, the localized region that contains the hidden node can be identified.

ContributorsSu, Riqi (Author) / Wang, Wen-Xu (Author) / Wang, Xiao (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-01-06