This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 11 - 19 of 19
Filtering by

Clear all filters

129428-Thumbnail Image.png
Description

Quantifying the interactions of bacteria with external ligands is fundamental to the understanding of pathogenesis, antibiotic resistance, immune evasion, and mechanism of antimicrobial action. Due to inherent cell-to-cell heterogeneity in a microbial population, each bacterium interacts differently with its environment. This large variability is washed out in bulk assays, and

Quantifying the interactions of bacteria with external ligands is fundamental to the understanding of pathogenesis, antibiotic resistance, immune evasion, and mechanism of antimicrobial action. Due to inherent cell-to-cell heterogeneity in a microbial population, each bacterium interacts differently with its environment. This large variability is washed out in bulk assays, and there is a need of techniques that can quantify interactions of bacteria with ligands at the single bacterium level. In this work, we present a label-free and real-time plasmonic imaging technique to measure the binding kinetics of ligand interactions with single bacteria, and perform statistical analysis of the heterogeneity. Using the technique, we have studied interactions of antibodies with single Escherichia coli O157:H7 cells and demonstrated a capability of determining the binding kinetic constants of single live bacteria with ligands, and quantify heterogeneity in a microbial population.

ContributorsSyal, Karan (Author) / Wang, Wei (Author) / Shan, Xiaonan (Author) / Wang, Shaopeng (Author) / Chen, Hong-Yuan (Author) / Tao, Nongjian (Author) / Biodesign Institute (Contributor)
Created2015-01-15
128518-Thumbnail Image.png
Description

Piezoresistivity is a fundamental property of materials that has found many device applications. Here we report piezoresistivity in double helical DNA molecules. By studying the dependence of molecular conductance and piezoresistivity of single DNA molecules with different sequences and lengths, and performing molecular orbital calculations, we show that the piezoresistivity

Piezoresistivity is a fundamental property of materials that has found many device applications. Here we report piezoresistivity in double helical DNA molecules. By studying the dependence of molecular conductance and piezoresistivity of single DNA molecules with different sequences and lengths, and performing molecular orbital calculations, we show that the piezoresistivity of DNA is caused by force-induced changes in the π–π electronic coupling between neighbouring bases, and in the activation energy of hole hopping. We describe the results in terms of thermal activated hopping model together with the ladder-based mechanical model for DNA proposed by de Gennes.

ContributorsBruot, Christopher (Author) / Palma, Julio (Author) / Xiang, Limin (Author) / Mujica, Vladimiro (Author) / Ratner, Mark A. (Author) / Tao, Nongjian (Author) / Biodesign Institute (Contributor)
Created2015-09-04
128499-Thumbnail Image.png
Description

Studying the thermoelectric effect in DNA is important for unravelling charge transport mechanisms and for developing relevant applications of DNA molecules. Here we report a study of the thermoelectric effect in single DNA molecules. By varying the molecular length and sequence, we tune the charge transport in DNA to either

Studying the thermoelectric effect in DNA is important for unravelling charge transport mechanisms and for developing relevant applications of DNA molecules. Here we report a study of the thermoelectric effect in single DNA molecules. By varying the molecular length and sequence, we tune the charge transport in DNA to either a hopping- or tunnelling-dominated regimes. The thermoelectric effect is small and insensitive to the molecular length in the hopping regime. In contrast, the thermoelectric effect is large and sensitive to the length in the tunnelling regime. These findings indicate that one may control the thermoelectric effect in DNA by varying its sequence and length. We describe the experimental results in terms of hopping and tunnelling charge transport models.

ContributorsLi, Yueqi (Author) / Xiang, Limin (Author) / Palma, Julio (Author) / Asai, Yoshihiro (Author) / Tao, Nongjian (Author) / Biodesign Institute (Contributor)
Created2016-04-15
128543-Thumbnail Image.png
Description

Extensive evidence has shown that long-range charge transport can occur along double helical DNA, but active control (switching) of single-DNA conductance with an external field has not yet been demonstrated. Here we demonstrate conductance switching in DNA by replacing a DNA base with a redox group. By applying an electrochemical

Extensive evidence has shown that long-range charge transport can occur along double helical DNA, but active control (switching) of single-DNA conductance with an external field has not yet been demonstrated. Here we demonstrate conductance switching in DNA by replacing a DNA base with a redox group. By applying an electrochemical (EC) gate voltage to the molecule, we switch the redox group between the oxidized and reduced states, leading to reversible switching of the DNA conductance between two discrete levels. We further show that monitoring the individual conductance switching allows the study of redox reaction kinetics and thermodynamics at single molecular level using DNA as a probe. Our theoretical calculations suggest that the switch is due to the change in the energy level alignment of the redox states relative to the Fermi level of the electrodes.

ContributorsXiang, Limin (Author) / Palma, Julio (Author) / Li, Yueqi (Author) / Mujica, Vladimiro (Author) / Ratner, Mark A. (Author) / Tao, Nongjian (Author) / Biodesign Institute (Contributor)
Created2017-02-20
128525-Thumbnail Image.png
Description

Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact

Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

ContributorsZhao, Zhao (Author) / Fu, Jinglin (Author) / Dhakal, Soma (Author) / Johnson-Buck, Alexander (Author) / Liu, Minghui (Author) / Zhang, Ting (Author) / Woodbury, Neal (Author) / Liu, Yan (Author) / Walter, Nils G. (Author) / Yan, Hao (Author) / Biodesign Institute (Contributor)
Created2016-02-10
128460-Thumbnail Image.png
Description

Measuring small molecule interactions with membrane proteins in single cells is critical for understanding many cellular processes and for screening drugs. However, developing such a capability has been a difficult challenge. We show that molecular interactions with membrane proteins induce a mechanical deformation in the cellular membrane, and real-time monitoring

Measuring small molecule interactions with membrane proteins in single cells is critical for understanding many cellular processes and for screening drugs. However, developing such a capability has been a difficult challenge. We show that molecular interactions with membrane proteins induce a mechanical deformation in the cellular membrane, and real-time monitoring of the deformation with subnanometer resolution allows quantitative analysis of small molecule–membrane protein interaction kinetics in single cells. This new strategy provides mechanical amplification of small binding signals, making it possible to detect small molecule interactions with membrane proteins. This capability, together with spatial resolution, also allows the study of the heterogeneous nature of cells by analyzing the interaction kinetics variability between different cells and between different regions of a single cell.

ContributorsGuan, Yan (Author) / Shan, Xiaonan (Author) / Zhang, Fenni (Author) / Wang, Shaopeng (Author) / Chen, Hong-Yuan (Author) / Tao, Nongjian (Author) / Biodesign Institute (Contributor)
Created2015-10-23
127990-Thumbnail Image.png
Description

The relationship between sequence and binding properties of an aptamer for immunoglobulin E (IgE) was investigated using custom DNA microarrays. Single, double and some triple mutations of the aptamer sequence were created to evaluate the importance of specific base composition on aptamer binding. The majority of the positions in the

The relationship between sequence and binding properties of an aptamer for immunoglobulin E (IgE) was investigated using custom DNA microarrays. Single, double and some triple mutations of the aptamer sequence were created to evaluate the importance of specific base composition on aptamer binding. The majority of the positions in the aptamer sequence were found to be immutable, with changes at these positions resulting in more than a 100-fold decrease in binding affinity. Improvements in binding were observed by altering the stem region of the aptamer, suggesting that it plays a significant role in binding. Results obtained for the various mutations were used to estimate the information content and the probability of finding a functional aptamer sequence by selection from a random library. For the IgE-binding aptamer, this probability is on the order of 10-10 to 10-9. Results obtained for the double and triple mutations also show that there are no compensatory mutations within the space defined by those mutations. Apparently, at least for this particular aptamer, the functional sequence space can be represented as a rugged landscape with sharp peaks defined by highly constrained base compositions. This makes the rational optimization of aptamer sequences using step-wise mutagenesis approaches very challenging.

ContributorsKatilius, Evaldas (Author) / Flores, Carole (Author) / Woodbury, Neal (Author) / Biodesign Institute (Contributor)
Created2007-12-01
128194-Thumbnail Image.png
Description

There is an increasing awareness that health care must move from post-symptomatic treatment to presymptomatic intervention. An ideal system would allow regular inexpensive monitoring of health status using circulating antibodies to report on health fluctuations. Recently, we demonstrated that peptide microarrays can do this through antibody signatures (immunosignatures). Unfortunately, printed

There is an increasing awareness that health care must move from post-symptomatic treatment to presymptomatic intervention. An ideal system would allow regular inexpensive monitoring of health status using circulating antibodies to report on health fluctuations. Recently, we demonstrated that peptide microarrays can do this through antibody signatures (immunosignatures). Unfortunately, printed microarrays are not scalable. Here we demonstrate a platform based on fabricating microarrays (~10 M peptides per slide, 330,000 peptides per assay) on silicon wafers using equipment common to semiconductor manufacturing. The potential of these microarrays for comprehensive health monitoring is verified through the simultaneous detection and classification of six different infectious diseases and six different cancers. Besides diagnostics, these high-density peptide chips have numerous other applications both in health care and elsewhere.

ContributorsLegutki, Joseph Barten (Author) / Zhao, Zhan-Gong (Author) / Greving, Matt (Author) / Woodbury, Neal (Author) / Johnston, Stephen (Author) / Stafford, Phillip (Author) / Biodesign Institute (Contributor)
Created2014-09-03
129532-Thumbnail Image.png
Description

Swinging arms are a key functional component of multistep catalytic transformations in many naturally occurring multi-enzyme complexes. This arm is typically a prosthetic chemical group that is covalently attached to the enzyme complex via a flexible linker, allowing the direct transfer of substrate molecules between multiple active sites within the

Swinging arms are a key functional component of multistep catalytic transformations in many naturally occurring multi-enzyme complexes. This arm is typically a prosthetic chemical group that is covalently attached to the enzyme complex via a flexible linker, allowing the direct transfer of substrate molecules between multiple active sites within the complex. Mimicking this method of substrate channelling outside the cellular environment requires precise control over the spatial parameters of the individual components within the assembled complex. DNA nanostructures can be used to organize functional molecules with nanoscale precision and can also provide nanomechanical control. Until now, protein–DNA assemblies have been used to organize cascades of enzymatic reactions by controlling the relative distance and orientation of enzymatic components or by facilitating the interface between enzymes/cofactors and electrode surfaces. Here, we show that a DNA nanostructure can be used to create a multi-enzyme complex in which an artificial swinging arm facilitates hydride transfer between two coupled dehydrogenases. By exploiting the programmability of DNA nanostructures, key parameters including position, stoichiometry and inter-enzyme distance can be manipulated for optimal activity.

ContributorsFu, Jinglin (Author) / Yang, Yuhe (Author) / Johnson-Buck, Alexander (Author) / Liu, Minghui (Author) / Liu, Yan (Author) / Walter, Nils G. (Author) / Woodbury, Neal (Author) / Yan, Hao (Author) / Biodesign Institute (Contributor)
Created2014-07-01