This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 20
Filtering by

Clear all filters

128003-Thumbnail Image.png
Description

Illicit psychostimulant addiction remains a significant problem worldwide, despite decades of research into the neural underpinnings and various treatment approaches. The purpose of this review is to provide a succinct overview of the neurocircuitry involved in drug addiction, as well as the acute and chronic effects of cocaine and amphetamines

Illicit psychostimulant addiction remains a significant problem worldwide, despite decades of research into the neural underpinnings and various treatment approaches. The purpose of this review is to provide a succinct overview of the neurocircuitry involved in drug addiction, as well as the acute and chronic effects of cocaine and amphetamines within this circuitry in humans. Investigational pharmacological treatments for illicit psychostimulant addiction are also reviewed. Our current knowledge base clearly demonstrates that illicit psychostimulants produce lasting adaptive neural and behavioral changes that contribute to the progression and maintenance of addiction. However, attempts at generating pharmacological treatments for psychostimulant addiction have historically focused on intervening at the level of the acute effects of these drugs. The lack of approved pharmacological treatments for psychostimulant addiction highlights the need for new treatment strategies, especially those that prevent or ameliorate the adaptive neural, cognitive, and behavioral changes caused by chronic use of this class of illicit drugs.

ContributorsTaylor, Sarah (Author) / Lewis, Candace (Author) / Olive, M. Foster (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-02-08
190-Thumbnail Image.png
Description

Attitudes and habits are extremely resistant to change, but a disruption of the magnitude of the COVID-19 pandemic has the potential to bring long-term, massive societal changes. During the pandemic, people are being compelled to experience new ways of interacting, working, learning, shopping, traveling, and eating meals. Going forward, a

Attitudes and habits are extremely resistant to change, but a disruption of the magnitude of the COVID-19 pandemic has the potential to bring long-term, massive societal changes. During the pandemic, people are being compelled to experience new ways of interacting, working, learning, shopping, traveling, and eating meals. Going forward, a critical question is whether these experiences will result in changed behaviors and preferences in the long term. This paper presents initial findings on the likelihood of long-term changes in telework, daily travel, restaurant patronage, and air travel based on survey data collected from adults in the United States in Spring 2020. These data suggest that a sizable fraction of the increase in telework and decreases in both business air travel and restaurant patronage are likely here to stay. As for daily travel modes, public transit may not fully recover its pre-pandemic ridership levels, but many of our respondents are planning to bike and walk more than they used to. These data reflect the responses of a sample that is higher income and more highly educated than the US population. The response of these particular groups to the COVID-19 pandemic is perhaps especially important to understand, however, because their consumption patterns give them a large influence on many sectors of the economy.

Created2020-09-03
162019-Thumbnail Image.png
Description

Cities in the Global South face rapid urbanization challenges and often suffer an acute lack of infrastructure and governance capacities. Smart Cities Mission, in India, launched in 2015, aims to offer a novel approach for urban renewal of 100 cities following an area‐based development approach, where the use of ICT

Cities in the Global South face rapid urbanization challenges and often suffer an acute lack of infrastructure and governance capacities. Smart Cities Mission, in India, launched in 2015, aims to offer a novel approach for urban renewal of 100 cities following an area‐based development approach, where the use of ICT and digital technologies is particularly emphasized. This article presents a critical review of the design and implementation framework of this new urban renewal program across selected case‐study cities. The article examines the claims of the so‐called “smart cities” against actual urban transformation on‐ground and evaluates how “inclusive” and “sustainable” these developments are. We quantify the scale and coverage of the smart city urban renewal projects in the cities to highlight who the program includes and excludes. The article also presents a statistical analysis of the sectoral focus and budgetary allocations of the projects under the Smart Cities Mission to find an inherent bias in these smart city initiatives in terms of which types of development they promote and the ones it ignores. The findings indicate that a predominant emphasis on digital urban renewal of selected precincts and enclaves, branded as “smart cities,” leads to deepening social polarization and gentrification. The article offers crucial urban planning lessons for designing ICT‐driven urban renewal projects, while addressing critical questions around inclusion and sustainability in smart city ventures.`

ContributorsPraharaj, Sarbeswar (Author)
Created2021-05-07
Description

Attention deficit/hyperactivity disorder (ADHD) is a risk factor for tobacco use and dependence. This study examines the responsiveness to nicotine of an adolescent model of ADHD, the spontaneously hypertensive rat (SHR). The conditioned place preference (CPP) procedure was used to assess nicotine-induced locomotion and conditioned reward in SHR and the

Attention deficit/hyperactivity disorder (ADHD) is a risk factor for tobacco use and dependence. This study examines the responsiveness to nicotine of an adolescent model of ADHD, the spontaneously hypertensive rat (SHR). The conditioned place preference (CPP) procedure was used to assess nicotine-induced locomotion and conditioned reward in SHR and the Wistar Kyoto (WKY) control strain over a range of nicotine doses (0.0, 0.1, 0.3 and 0.6 mg/kg). Prior to conditioning, SHRs were more active and less biased toward one side of the CPP chamber than WKY rats. Following conditioning, SHRs developed CPP to the highest dose of nicotine (0.6 mg/kg), whereas WKYs did not develop CPP to any nicotine dose tested. During conditioning, SHRs displayed greater locomotor activity in the nicotine-paired compartment than in the saline-paired compartment across conditioning trials. SHRs that received nicotine (0.1, 0.3, 0.6 mg/kg) in the nicotine-paired compartment showed an increase in locomotor activity between conditioning trials. Nicotine did not significantly affect WKY locomotor activity. These findings suggest that the SHR strain is a suitable model for studying ADHD-related nicotine use and dependence, but highlights potential limitations of the WKY control strain and the CPP procedure for modeling ADHD-related nicotine reward.

ContributorsWatterson, Elizabeth (Author) / Daniels, Carter (Author) / Watterson, Lucas (Author) / Mazur, Gabriel (Author) / Brackney, Ryan (Author) / Olive, M. Foster (Author) / Sanabria, Federico (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-09-15
128733-Thumbnail Image.png
Description

Positive allosteric modulators (PAMs) of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are a diverse class of compounds that increase fast excitatory transmission in the brain. AMPA PAMs have been shown to facilitate long-term potentiation, strengthen communication between various cortical and subcortical regions, and some of these compounds increase the production and release

Positive allosteric modulators (PAMs) of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are a diverse class of compounds that increase fast excitatory transmission in the brain. AMPA PAMs have been shown to facilitate long-term potentiation, strengthen communication between various cortical and subcortical regions, and some of these compounds increase the production and release of brain-derived neurotrophic factor (BDNF) in an activity-dependent manner. Through these mechanisms, AMPA PAMs have shown promise as broad spectrum pharmacotherapeutics in preclinical and clinical studies for various neurodegenerative and psychiatric disorders. In recent years, a small collection of preclinical animal studies has also shown that AMPA PAMs may have potential as pharmacotherapeutic adjuncts to extinction-based or cue-exposure therapies for the treatment of drug addiction. The present paper will review this preclinical literature, discuss novel data collected in our laboratory, and recommend future research directions for the possible development of AMPA PAMs as anti-addiction medications.

ContributorsWatterson, Lucas (Author) / Olive, M. Foster (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-12-30
128476-Thumbnail Image.png
Description

Background: Use of synthetic cathinones, which are designer stimulants found in “bath salts,” has increased dramatically in recent years. Following governmental bans of methylenedioxypyrovalerone, mephedrone, and methylone, a second generation of synthetic cathinones with unknown abuse liability has emerged as replacements.

Methods: Using a discrete trials current intensity threshold intracranial self-stimulation procedure, the

Background: Use of synthetic cathinones, which are designer stimulants found in “bath salts,” has increased dramatically in recent years. Following governmental bans of methylenedioxypyrovalerone, mephedrone, and methylone, a second generation of synthetic cathinones with unknown abuse liability has emerged as replacements.

Methods: Using a discrete trials current intensity threshold intracranial self-stimulation procedure, the present study assessed the effects of 2 common second-generation synthetic cathinones, α‐pyrrolidinopentiophenone (0.1–5mg/kg) and 4-methyl-N-ethcathinone (1–100mg/kg) on brain reward function. Methamphetamine (0.1–3mg/kg) was also tested for comparison purposes.

Results: Results revealed both α‐pyrrolidinopentiophenone and 4-methyl-N-ethcathinone produced significant intracranial self-stimulation threshold reductions similar to that of methamphetamine. α‐Pyrrolidinopentiophenone (1mg/kg) produced a significant maximal reduction in intracranial self-stimulation thresholds (~19%) most similar to maximal reductions produced by methamphetamine (1mg/kg, ~20%). Maximal reductions in intracranial self-stimulation thresholds produced by 4-methyl-N-ethcathinone were observed at 30mg/kg (~15%) and were comparable with those observed with methamphetamine and α‐pyrrolidinopentiophenone tested at the 0.3-mg/kg dose (~14%). Additional analysis of the ED50 values from log-transformed data revealed the rank order potency of these drugs as methamphetamine ≈ α‐pyrrolidinopentiophenone>4-methyl-N-ethcathinone.

Conclusions: These data suggest that the newer second-generation synthetic cathinones activate the brain reward circuitry and thus may possess a similar degree of abuse potential as prototypical illicit psychostimulants such as methamphetamine as well as the first generation synthetic cathinone methylenedioxypyrovalerone, as previously reported.

ContributorsWatterson, Lucas (Author) / Burrows, Brian (Author) / Hernandez, Raymundo (Author) / Moore, Katherine N. (Author) / Grabenauer, Megan (Author) / Marusich, Julie A. (Author) / Olive, M. Foster (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-22
128455-Thumbnail Image.png
Description

A new genomovirus has been identified in three common bean plants in Brazil. This virus has a circular genome of 2,220 nucleotides and 3 major open reading frames. It shares 80.7% genome-wide pairwise identity with a genomovirus recovered from Tongan fruit bat guano.

Created2016-11-10
128445-Thumbnail Image.png
Description

Here we report the first complete genome sequence of a cauliflower mosaic virus from Brazil, obtained from the gut content of the predator earwig (Doru luteipes). This virus has a genome of 8,030 nucleotides (nt) and shares 97% genome-wide identity with an isolate from Argentina.

Created2017-03-16
128444-Thumbnail Image.png
Description

Implementation of a vector-enabled metagenomics approach resulted in the identification of various gemini viruses. We identified the genome sequences of beet curly top Iran virus, turnip curly top viruses, oat dwarf viruses, the first from Iran, and wheat dwarf virus from leafhoppers feeding on beet, parsley, pumpkin, and turnip plants.

ContributorsKamali, Mehdi (Author) / Heydarnejad, Jahangir (Author) / Pouramini, Najmeh (Author) / Masumi, Hossain (Author) / Farkas, Kata (Author) / Kraberger, Simona (Author) / Varsani, Arvind (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-02-23
128437-Thumbnail Image.png
Description

Metagenomic approaches are rapidly expanding our knowledge of the diversity of viruses. In the fecal matter of Nigerian chimpanzees we recovered three gokushovirus genomes, one circular replication-associated protein encoding single-stranded DNA virus (CRESS), and a CRESS DNA molecule.

ContributorsWalters, Matthew (Author) / Bawuro, Musa (Author) / Christopher, Alfred (Author) / Knight, Alexander (Author) / Kraberger, Simona (Author) / Stainton, Daisy (Author) / Chapman, Hazel (Author) / Varsani, Arvind (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-03-02