This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 27
Filtering by

Clear all filters

128003-Thumbnail Image.png
Description

Illicit psychostimulant addiction remains a significant problem worldwide, despite decades of research into the neural underpinnings and various treatment approaches. The purpose of this review is to provide a succinct overview of the neurocircuitry involved in drug addiction, as well as the acute and chronic effects of cocaine and amphetamines

Illicit psychostimulant addiction remains a significant problem worldwide, despite decades of research into the neural underpinnings and various treatment approaches. The purpose of this review is to provide a succinct overview of the neurocircuitry involved in drug addiction, as well as the acute and chronic effects of cocaine and amphetamines within this circuitry in humans. Investigational pharmacological treatments for illicit psychostimulant addiction are also reviewed. Our current knowledge base clearly demonstrates that illicit psychostimulants produce lasting adaptive neural and behavioral changes that contribute to the progression and maintenance of addiction. However, attempts at generating pharmacological treatments for psychostimulant addiction have historically focused on intervening at the level of the acute effects of these drugs. The lack of approved pharmacological treatments for psychostimulant addiction highlights the need for new treatment strategies, especially those that prevent or ameliorate the adaptive neural, cognitive, and behavioral changes caused by chronic use of this class of illicit drugs.

ContributorsTaylor, Sarah (Author) / Lewis, Candace (Author) / Olive, M. Foster (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-02-08
141478-Thumbnail Image.png
Description

In this study, we examine how development status and water scarcity shape people's perceptions of "hard path" and "soft path" water solutions. Based on ethnographic research conducted in four semi-rural/peri-urban sites (in Bolivia, Fiji, New Zealand, and the US), we use content analysis to conduct statistical and thematic comparisons of

In this study, we examine how development status and water scarcity shape people's perceptions of "hard path" and "soft path" water solutions. Based on ethnographic research conducted in four semi-rural/peri-urban sites (in Bolivia, Fiji, New Zealand, and the US), we use content analysis to conduct statistical and thematic comparisons of interview data. Our results indicate clear differences associated with development status and, to a lesser extent, water scarcity. People in the two less developed sites were more likely to suggest hard path solutions, less likely to suggest soft path solutions, and more likely to see no path to solutions than people in the more developed sites. Thematically, people in the two less developed sites envisioned solutions that involve small-scale water infrastructure and decentralized, community-based solutions, while people in the more developed sites envisioned solutions that involve large-scale infrastructure and centralized, regulatory water solutions. People in the two water-scarce sites were less likely to suggest soft path solutions and more likely to see no path to solutions (but no more likely to suggest hard path solutions) than people in the water-rich sites. Thematically, people in the two water-rich sites seemed to perceive a wider array of unrealized potential soft path solutions than those in the water-scarce sites. On balance, our findings are encouraging in that they indicate that people are receptive to soft path solutions in a range of sites, even those with limited financial or water resources. Our research points to the need for more studies that investigate the social feasibility of soft path water solutions, particularly in sites with significant financial and natural resource constraints.

ContributorsWutich, Amber (Author) / White, A. C. (Author) / White, Dave (Author) / Larson, Kelli (Author) / Brewis Slade, Alexandra (Author) / Roberts, Christine (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-01-13
128733-Thumbnail Image.png
Description

Positive allosteric modulators (PAMs) of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are a diverse class of compounds that increase fast excitatory transmission in the brain. AMPA PAMs have been shown to facilitate long-term potentiation, strengthen communication between various cortical and subcortical regions, and some of these compounds increase the production and release

Positive allosteric modulators (PAMs) of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are a diverse class of compounds that increase fast excitatory transmission in the brain. AMPA PAMs have been shown to facilitate long-term potentiation, strengthen communication between various cortical and subcortical regions, and some of these compounds increase the production and release of brain-derived neurotrophic factor (BDNF) in an activity-dependent manner. Through these mechanisms, AMPA PAMs have shown promise as broad spectrum pharmacotherapeutics in preclinical and clinical studies for various neurodegenerative and psychiatric disorders. In recent years, a small collection of preclinical animal studies has also shown that AMPA PAMs may have potential as pharmacotherapeutic adjuncts to extinction-based or cue-exposure therapies for the treatment of drug addiction. The present paper will review this preclinical literature, discuss novel data collected in our laboratory, and recommend future research directions for the possible development of AMPA PAMs as anti-addiction medications.

ContributorsWatterson, Lucas (Author) / Olive, M. Foster (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-12-30
128167-Thumbnail Image.png
Description

Many population centers in the American West rely on water from the Colorado River Basin, which has faced shortages in recent years that are anticipated to be exacerbated by climate change. Shortages to urban water supplies related to climate change will not be limited to cities dependent on the Colorado

Many population centers in the American West rely on water from the Colorado River Basin, which has faced shortages in recent years that are anticipated to be exacerbated by climate change. Shortages to urban water supplies related to climate change will not be limited to cities dependent on the Colorado River. Considering this, addressing sustainable water governance is timely and critical for cities, states, and regions facing supply shortages and pollution problems. Engaging in sustainability transitions of these hydro-social systems will increase the ability of such systems to meet the water needs of urban communities. In this paper, we identify historical transitions in water governance and examine their context for three sites in the Colorado River Basin (Denver, Colorado, Las Vegas, Nevada, and Phoenix, Arizona) to provide insight for intentional transitions towards sustainable, or “water sensitive” cities. The comparative historical approach employed allows us to more fully understand differences in present-day water governance decisions between the sites, identify past catalysts for transitions, and recognize emerging patterns and opportunities that may impact current and future water governance in the Colorado River Basin and beyond.

ContributorsSullivan, Abigail (Author) / White, Dave (Author) / Larson, Kelli (Author) / Wutich, Amber (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2017-05-06
127822-Thumbnail Image.png
Description

Understanding the food-energy-water nexus is necessary to identify risks and inform strategies for nexus governance to support resilient, secure, and sustainable societies. To manage risks and realize efficiencies, we must understand not only how these systems are physically connected but also how they are institutionally linked. It is important to

Understanding the food-energy-water nexus is necessary to identify risks and inform strategies for nexus governance to support resilient, secure, and sustainable societies. To manage risks and realize efficiencies, we must understand not only how these systems are physically connected but also how they are institutionally linked. It is important to understand how actors who make planning, management, and policy decisions understand the relationships among components of the systems. Our question is: How do stakeholders involved in food, energy, and water governance in Phoenix, Arizona understand the nexus and what are the implications for integrated nexus governance? We employ a case study design, generate qualitative data through focus groups and interviews, and conduct a content analysis. While stakeholders in the Phoenix area who are actively engaged in food, energy, and water systems governance appreciate the rationale for nexus thinking, they recognize practical limitations to implementing these concepts. Concept maps of nexus interactions provide one view of system interconnections that be used to complement other ways of knowing the nexus, such as physical infrastructure system diagrams or actor-networks. Stakeholders believe nexus governance could be improved through awareness and education, consensus and collaboration, transparency, economic incentives, working across scales, and incremental reforms.

ContributorsWhite, Dave (Author) / Jones, Jaime (Author) / Maciejewski, Ross (Author) / Aggarwal, Rimjhim (Author) / Mascaro, Giuseppe (Author) / College of Public Service and Community Solutions (Contributor)
Created2017-11-29
128803-Thumbnail Image.png
Description

The group I metabotropic glutamate receptors (mGluR1a and mGluR5) are important modulators of neuronal structure and function. Although these receptors share common signaling pathways, they are capable of having distinct effects on cellular plasticity. We investigated the individual effects of mGluR1a or mGluR5 activation on dendritic spine density in medium

The group I metabotropic glutamate receptors (mGluR1a and mGluR5) are important modulators of neuronal structure and function. Although these receptors share common signaling pathways, they are capable of having distinct effects on cellular plasticity. We investigated the individual effects of mGluR1a or mGluR5 activation on dendritic spine density in medium spiny neurons in the nucleus accumbens (NAc), which has become relevant with the potential use of group I mGluR based therapeutics in the treatment of drug addiction. We found that systemic administration of mGluR subtype-specific positive allosteric modulators had opposite effects on dendritic spine densities. Specifically, mGluR5 positive modulation decreased dendritic spine densities in the NAc shell and core, but was without effect in the dorsal striatum, whereas increased spine densities in the NAc were observed with mGluR1a positive modulation. Additionally, direct activation of mGluR5 via CHPG administration into the NAc also decreased the density of dendritic spines. These data provide insight on the ability of group I mGluRs to induce structural plasticity in the NAc and demonstrate that the group I mGluRs are capable of producing not just distinct, but opposing, effects on dendritic spine density.

ContributorsGross, Kellie S. (Author) / Brandner, Dieter D. (Author) / Martinez, Luis A. (Author) / Olive, M. Foster (Author) / Meisel, Robert L. (Author) / Mermelstein, Paul G. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-09-12
128799-Thumbnail Image.png
Description

Background: Urbanization can strongly impact the physiology, behavior, and fitness of animals. Conditions in cities may also promote the transmission and success of animal parasites and pathogens. However, to date, no studies have examined variation in the prevalence or severity of several distinct pathogens/parasites along a gradient of urbanization in animals

Background: Urbanization can strongly impact the physiology, behavior, and fitness of animals. Conditions in cities may also promote the transmission and success of animal parasites and pathogens. However, to date, no studies have examined variation in the prevalence or severity of several distinct pathogens/parasites along a gradient of urbanization in animals or if these infections increase physiological stress in urban populations.

Methodology/Principal Findings: Here, we measured the prevalence and severity of infection with intestinal coccidians (Isospora sp.) and the canarypox virus (Avipoxvirus) along an urban-to-rural gradient in wild male house finches (Haemorhous mexicanus). In addition, we quantified an important stress indicator in animals (oxidative stress) and several axes of urbanization, including human population density and land-use patterns within a 1 km radius of each trapping site. Prevalence of poxvirus infection and severity of coccidial infection were significantly associated with the degree of urbanization, with an increase of infection in more urban areas. The degrees of infection by the two parasites were not correlated along the urban-rural gradient. Finally, levels of oxidative damage in plasma were not associated with infection or with urbanization metrics.

Conclusion/Significance: These results indicate that the physical presence of humans in cities and the associated altered urban landscape characteristics are associated with increased infections with both a virus and a gastrointestinal parasite in this common songbird resident of North American cities. Though we failed to find elevations in urban- or parasite/pathogen-mediated oxidative stress, humans may facilitate infections in these birds via bird feeders (i.e. horizontal disease transmission due to unsanitary surfaces and/or elevations in host population densities) and/or via elevations in other forms of physiological stress (e.g. corticosterone, nutritional).

ContributorsGiraudeau, Mathieu (Author) / Mousel, Melanie (Author) / Earl, Stevan (Author) / McGraw, Kevin (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-02-04
129006-Thumbnail Image.png
Description

Background: The coevolution of male traits and female mate preferences has led to the elaboration and diversification of sexually selected traits; however the mechanisms that mediate trait-preference coevolution are largely unknown. Carotenoid acquisition and accumulation are key determinants of the expression of male sexually selected carotenoid-based coloration and a primary mechanism

Background: The coevolution of male traits and female mate preferences has led to the elaboration and diversification of sexually selected traits; however the mechanisms that mediate trait-preference coevolution are largely unknown. Carotenoid acquisition and accumulation are key determinants of the expression of male sexually selected carotenoid-based coloration and a primary mechanism maintaining the honest information content of these signals. Carotenoids also influence female health and reproduction in ways that may alter the costs and benefits of mate choice behaviors and thus provide a potential biochemical link between the expression of male traits and female preferences. To test this hypothesis, we manipulated the dietary carotenoid levels of captive female house finches (Carpodacus mexicanus) and assessed their mate choice behavior in response to color-manipulated male finches.

Results: Females preferred to associate with red males, but carotenoid supplementation did not influence the direction or strength of this preference. Females receiving a low-carotenoid diet were less responsive to males in general, and discrimination among the colorful males was positively linked to female plasma carotenoid levels at the beginning of the study when the diet of all birds was carotenoid-limited.

Conclusions: Although female preference for red males was not influenced by carotenoid intake, changes in mating responsiveness and discrimination linked to female carotenoid status may alter how this preference is translated into choice. The reddest males, with the most carotenoid rich plumage, tend to pair early in the breeding season. If carotenoid-related variations in female choice behavior shift the timing of pairing, then they have the potential to promote assortative mating by carotenoid status and drive the evolution of carotenoid-based male plumage coloration.

ContributorsToomey, Matthew (Author) / McGraw, Kevin (Author) / College of Liberal Arts and Sciences (Contributor)
Created2012-01-10
128909-Thumbnail Image.png
Description

Environmental conditions early in life can affect an organism’s phenotype at adulthood, which may be tuned to perform optimally in conditions that mimic those experienced during development (Environmental Matching hypothesis), or may be generally superior when conditions during development were of higher quality (Silver Spoon hypothesis). Here, we tested these

Environmental conditions early in life can affect an organism’s phenotype at adulthood, which may be tuned to perform optimally in conditions that mimic those experienced during development (Environmental Matching hypothesis), or may be generally superior when conditions during development were of higher quality (Silver Spoon hypothesis). Here, we tested these hypotheses by examining how diet during development interacted with diet during adulthood to affect adult sexually selected ornamentation and immune function in male mallard ducks (Anas platyrhynchos). Mallards have yellow, carotenoid-pigmented beaks that are used in mate choice, and the degree of beak coloration has been linked to adult immune function. Using a 2×2 factorial experimental design, we reared mallards on diets containing either low or high levels of carotenoids (nutrients that cannot be synthesized de novo) throughout the period of growth, and then provided adults with one of these two diets while simultaneously quantifying beak coloration and response to a variety of immune challenges.

We found that both developmental and adult carotenoid supplementation increased circulating carotenoid levels during dietary treatment, but that birds that received low-carotenoid diets during development maintained relatively higher circulating carotenoid levels during an adult immune challenge. Individuals that received low levels of carotenoids during development had larger phytohemagglutinin (PHA)-induced cutaneous immune responses at adulthood; however, dietary treatment during development and adulthood did not affect antibody response to a novel antigen, nitric oxide production, natural antibody levels, hemolytic capacity of the plasma, or beak coloration. However, beak coloration prior to immune challenges positively predicted PHA response, and strong PHA responses were correlated with losses in carotenoid-pigmented coloration. In sum, we did not find consistent support for either the Environmental Matching or Silver Spoon hypotheses. We then describe a new hypothesis that should be tested in future studies examining developmental plasticity.

ContributorsButler, Michael (Author) / McGraw, Kevin (Author) / College of Liberal Arts and Sciences (Contributor)
Created2012-05-30
128896-Thumbnail Image.png
Description

Background: For many bird species, vision is the primary sensory modality used to locate and assess food items. The health and spectral sensitivities of the avian visual system are influenced by diet-derived carotenoid pigments that accumulate in the retina. Among wild House Finches (Carpodacus mexicanus), we have found that retinal carotenoid

Background: For many bird species, vision is the primary sensory modality used to locate and assess food items. The health and spectral sensitivities of the avian visual system are influenced by diet-derived carotenoid pigments that accumulate in the retina. Among wild House Finches (Carpodacus mexicanus), we have found that retinal carotenoid accumulation varies significantly among individuals and is related to dietary carotenoid intake. If diet-induced changes in retinal carotenoid accumulation alter spectral sensitivity, then they have the potential to affect visually mediated foraging performance.

Methodology/Principal Findings: In two experiments, we measured foraging performance of house finches with dietarily manipulated retinal carotenoid levels. We tested each bird's ability to extract visually contrasting food items from a matrix of inedible distracters under high-contrast (full) and dimmer low-contrast (red-filtered) lighting conditions. In experiment one, zeaxanthin-supplemented birds had significantly increased retinal carotenoid levels, but declined in foraging performance in the high-contrast condition relative to astaxanthin-supplemented birds that showed no change in retinal carotenoid accumulation. In experiments one and two combined, we found that retinal carotenoid concentrations predicted relative foraging performance in the low- vs. high-contrast light conditions in a curvilinear pattern. Performance was positively correlated with retinal carotenoid accumulation among birds with low to medium levels of accumulation (∼0.5–1.5 µg/retina), but declined among birds with very high levels (>2.0 µg/retina).

Conclusion/Significance: Our results suggest that carotenoid-mediated spectral filtering enhances color discrimination, but that this improvement is traded off against a reduction in sensitivity that can compromise visual discrimination. Thus, retinal carotenoid levels may be optimized to meet the visual demands of specific behavioral tasks and light environments.

ContributorsToomey, Matthew (Author) / McGraw, Kevin (Author) / College of Liberal Arts and Sciences (Contributor)
Created2011-06-29