This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 31 - 40 of 58
Filtering by

Clear all filters

127887-Thumbnail Image.png
Description

To investigate dual-process persuasion theories in the context of group decision making, we studied low and high need-for-cognition (NFC) participants within a mock trial study. Participants considered plaintiff and defense expert scientific testimony that varied in argument strength. All participants heard a cross-examination of the experts focusing on peripheral information

To investigate dual-process persuasion theories in the context of group decision making, we studied low and high need-for-cognition (NFC) participants within a mock trial study. Participants considered plaintiff and defense expert scientific testimony that varied in argument strength. All participants heard a cross-examination of the experts focusing on peripheral information (e.g., credentials) about the expert, but half were randomly assigned to also hear central information highlighting flaws in the expert’s message (e.g., quality of the research presented by the expert). Participants rendered pre- and post-group-deliberation verdicts, which were considered “scientifically accurate” if the verdicts reflected the strong (versus weak) expert message, and “scientifically inaccurate” if they reflected the weak (versus strong) expert message. For individual participants, we replicated studies testing classic persuasion theories: Factors promoting reliance on central information (i.e., central cross-examination, high NFC) improved verdict accuracy because they sensitized individual participants to the quality discrepancy between the experts’ messages. Interestingly, however, at the group level, the more that scientifically accurate mock jurors discussed peripheral (versus central) information about the experts, the more likely their group was to reach the scientifically accurate verdict. When participants were arguing for the scientifically accurate verdict consistent with the strong expert message, peripheral comments increased their persuasiveness, which made the group more likely to reach the more scientifically accurate verdict.

Created2017-09-20
127897-Thumbnail Image.png
Description

Specification of PM2.5 transmission characteristics is important for pollution control and policymaking. We apply higher-order organization of complex networks to identify major potential PM2.5 contributors and PM2.5 transport pathways of a network of 189 cities in China. The network we create in this paper consists of major cities in China

Specification of PM2.5 transmission characteristics is important for pollution control and policymaking. We apply higher-order organization of complex networks to identify major potential PM2.5 contributors and PM2.5 transport pathways of a network of 189 cities in China. The network we create in this paper consists of major cities in China and contains information on meteorological conditions of wind speed and wind direction, data on geographic distance, mountains, and PM2.5 concentrations. We aim to reveal PM2.5 mobility between cities in China. Two major conclusions are revealed through motif analysis of complex networks. First, major potential PM2.5 pollution contributors are identified for each cluster by one motif, which reflects movements from source to target. Second, transport pathways of PM2.5 are revealed by another motif, which reflects transmission routes. To our knowledge, this is the first work to apply higher-order network analysis to study PM2.5 transport.

ContributorsWang, Yufang (Author) / Wang, Haiyan (Author) / Chang, Shuhua (Author) / Liu, Maoxing (Author) / New College of Interdisciplinary Arts and Sciences (Contributor)
Created2017-10-16
Description

Linnorm is a novel normalization and transformation method for the analysis of single cell RNA sequencing (scRNA-seq) data. Linnorm is developed to remove technical noises and simultaneously preserve biological variations in scRNA-seq data, such that existing statistical methods can be improved. Using real scRNA-seq data, we compared Linnorm with existing

Linnorm is a novel normalization and transformation method for the analysis of single cell RNA sequencing (scRNA-seq) data. Linnorm is developed to remove technical noises and simultaneously preserve biological variations in scRNA-seq data, such that existing statistical methods can be improved. Using real scRNA-seq data, we compared Linnorm with existing normalization methods, including NODES, SAMstrt, SCnorm, scran, DESeq and TMM. Linnorm shows advantages in speed, technical noise removal and preservation of cell heterogeneity, which can improve existing methods in the discovery of novel subtypes, pseudo-temporal ordering of cells, clustering analysis, etc. Linnorm also performs better than existing DEG analysis methods, including BASiCS, NODES, SAMstrt, Seurat and DESeq2, in false positive rate control and accuracy.

ContributorsYip, Shun H. (Author) / Wang, Panwen (Author) / Kocher, Jean-Pierre A. (Author) / Sham, Pak Chung (Author) / Wang, Junwen (Author) / College of Health Solutions (Contributor)
Created2017-09-18
128612-Thumbnail Image.png
Description

Health systems are heavily promoting patient portals. However, limited health literacy (HL) can restrict online communication via secure messaging (SM) because patients’ literacy skills must be sufficient to convey and comprehend content while clinicians must encourage and elicit communication from patients and match patients’ literacy level. This paper describes the

Health systems are heavily promoting patient portals. However, limited health literacy (HL) can restrict online communication via secure messaging (SM) because patients’ literacy skills must be sufficient to convey and comprehend content while clinicians must encourage and elicit communication from patients and match patients’ literacy level. This paper describes the Employing Computational Linguistics to Improve Patient-Provider Secure Email (ECLIPPSE) study, an interdisciplinary effort bringing together scientists in communication, computational linguistics, and health services to employ computational linguistic methods to (1) create a novel Linguistic Complexity Profile (LCP) to characterize communications of patients and clinicians and demonstrate its validity and (2) examine whether providers accommodate communication needs of patients with limited HL by tailoring their SM responses. We will study >5 million SMs generated by >150,000 ethnically diverse type 2 diabetes patients and >9000 clinicians from two settings: an integrated delivery system and a public (safety net) system. Finally, we will then create an LCP-based automated aid that delivers real-time feedback to clinicians to reduce the linguistic complexity of their SMs. This research will support health systems’ journeys to become health literate healthcare organizations and reduce HL-related disparities in diabetes care.

ContributorsSchillinger, Dean (Author) / McNamara, Danielle (Author) / Crossley, Scott (Author) / Lyles, Courtney (Author) / Moffet, Howard H. (Author) / Sarkar, Urmimala (Author) / Duran, Nicholas (Author) / Allen, Jill (Author) / Liu, Jennifer (Author) / Oryn, Danielle (Author) / Ratanawongsa, Neda (Author) / Karter, Andrew J. (Author) / New College of Interdisciplinary Arts and Sciences (Contributor)
Created2017-02-07
128626-Thumbnail Image.png
Description

Male courtship display is common in many animals; in some cases, males engage in courtship indiscriminately, spending significant time and energy courting heterospecifics with whom they have no chance of mating or producing viable offspring. Due to high costs and few if any benefits, we might expect mechanisms to evolve

Male courtship display is common in many animals; in some cases, males engage in courtship indiscriminately, spending significant time and energy courting heterospecifics with whom they have no chance of mating or producing viable offspring. Due to high costs and few if any benefits, we might expect mechanisms to evolve to reduce such misdirected courtship (or ‘reproductive interference’). In Habronattus jumping spiders, males frequently court heterospecifics with whom they do not mate or hybridize; females are larger and are voracious predators, posing a severe risk to males who court indiscriminately. In this study, we examined patterns of misdirected courtship in a natural community of four sympatric Habronattus species (H. clypeatus, H. hallani, H. hirsutus, and H. pyrrithrix).

We used direct field observations to weigh support for two hypotheses (differential microhabitat use and species recognition signaling) to explain how these species reduce the costs associated with misdirected courtship. We show that, while the four species of Habronattus do show some differences in microhabitat use, all four species still overlap substantially, and in three of the four species individuals equally encountered heterospecifics and conspecifics. Males courted females at every opportunity, regardless of species, and in some cases, this led to aggression and predation by the female. These results suggest that, while differences in microhabitat use might reduce misdirected courtship to some extent, co-existence of these four species may be possible due to complex communication (i.e. species-specific elements of a male’s courtship display). This study is the first to examine misdirected courtship in jumping spiders. Studies of misdirected courtship and its consequences in the field are limited and may broaden our understanding of how biodiversity is maintained within a community.

ContributorsTaylor, Lisa (Author) / Powell, Erin C. (Author) / McGraw, Kevin (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-04-05
128635-Thumbnail Image.png
Description

Background: Previous studies exploring sequence variation in the model legume, Medicago truncatula, relied on mapping short reads to a single reference. However, read-mapping approaches are inadequate to examine large, diverse gene families or to probe variation in repeat-rich or highly divergent genome regions. De novo sequencing and assembly of M. truncatula

Background: Previous studies exploring sequence variation in the model legume, Medicago truncatula, relied on mapping short reads to a single reference. However, read-mapping approaches are inadequate to examine large, diverse gene families or to probe variation in repeat-rich or highly divergent genome regions. De novo sequencing and assembly of M. truncatula genomes enables near-comprehensive discovery of structural variants (SVs), analysis of rapidly evolving gene families, and ultimately, construction of a pan-genome.

Results: Genome-wide synteny based on 15 de novo M. truncatula assemblies effectively detected different types of SVs indicating that as much as 22% of the genome is involved in large structural changes, altogether affecting 28% of gene models. A total of 63 million base pairs (Mbp) of novel sequence was discovered, expanding the reference genome space for Medicago by 16%. Pan-genome analysis revealed that 42% (180 Mbp) of genomic sequences is missing in one or more accession, while examination of de novo annotated genes identified 67% (50,700) of all ortholog groups as dispensable – estimates comparable to recent studies in rice, maize and soybean. Rapidly evolving gene families typically associated with biotic interactions and stress response were found to be enriched in the accession-specific gene pool. The nucleotide-binding site leucine-rich repeat (NBS-LRR) family, in particular, harbors the highest level of nucleotide diversity, large effect single nucleotide change, protein diversity, and presence/absence variation. However, the leucine-rich repeat (LRR) and heat shock gene families are disproportionately affected by large effect single nucleotide changes and even higher levels of copy number variation.

Conclusions: Analysis of multiple M. truncatula genomes illustrates the value of de novo assemblies to discover and describe structural variation, something that is often under-estimated when using read-mapping approaches. Comparisons among the de novo assemblies also indicate that different large gene families differ in the architecture of their structural variation.

ContributorsZhou, Peng (Author) / Silverstein, Kevin A. T. (Author) / Ramaraj, Thiruvarangan (Author) / Guhlin, Joseph (Author) / Denny, Roxanne (Author) / Liu, Junqi (Author) / Farmer, Andrew D. (Author) / Steele, Kelly (Author) / Stupar, Robert M. (Author) / Miller, Jason R. (Author) / Tiffin, Peter (Author) / Mudge, Joann (Author) / Young, Nevin D. (Author) / New College of Interdisciplinary Arts and Sciences (Contributor)
Created2017-03-27
128638-Thumbnail Image.png
Description

It remains challenging to predict regulatory variants in particular tissues or cell types due to highly context-specific gene regulation. By connecting large-scale epigenomic profiles to expression quantitative trait loci (eQTLs) in a wide range of human tissues/cell types, we identify critical chromatin features that predict variant regulatory potential. We present

It remains challenging to predict regulatory variants in particular tissues or cell types due to highly context-specific gene regulation. By connecting large-scale epigenomic profiles to expression quantitative trait loci (eQTLs) in a wide range of human tissues/cell types, we identify critical chromatin features that predict variant regulatory potential. We present cepip, a joint likelihood framework, for estimating a variant’s regulatory probability in a context-dependent manner. Our method exhibits significant GWAS signal enrichment and is superior to existing cell type-specific methods. Furthermore, using phenotypically relevant epigenomes to weight the GWAS single-nucleotide polymorphisms, we improve the statistical power of the gene-based association test.

ContributorsLi, Mulin Jun (Author) / Li, Miaoxin (Author) / Liu, Zipeng (Author) / Yan, Bin (Author) / Pan, Zhicheng (Author) / Huang, Dandan (Author) / Liang, Qian (Author) / Ying, Dingge (Author) / Xu, Feng (Author) / Yao, Hongcheng (Author) / Wang, Panwen (Author) / Kocher, Jean-Pierre A. (Author) / Xia, Zhengyuan (Author) / Sham, Pak Chung (Author) / Liu, Jun S. (Author) / Wang, Junwen (Author) / College of Health Solutions (Contributor)
Created2017-03-16
128566-Thumbnail Image.png
Description

MALDI-TOF MS profiling has been shown to be a rapid and reliable method to characterize pure cultures of bacteria. Currently, there is keen interest in using this technique to identify bacteria in mixtures. Promising results have been reported with two- or three-isolate model systems using biomarker-based approaches. In this work,

MALDI-TOF MS profiling has been shown to be a rapid and reliable method to characterize pure cultures of bacteria. Currently, there is keen interest in using this technique to identify bacteria in mixtures. Promising results have been reported with two- or three-isolate model systems using biomarker-based approaches. In this work, we applied MALDI-TOF MS-based methods to a more complex model mixture containing six bacteria. We employed: 1) a biomarker-based approach that has previously been shown to be useful in identification of individual bacteria in pure cultures and simple mixtures and 2) a similarity coefficient-based approach that is routinely and nearly exclusively applied to identification of individual bacteria in pure cultures. Both strategies were developed and evaluated using blind-coded mixtures. With regard to the biomarker-based approach, results showed that most peaks in mixture spectra could be assigned to those found in spectra of each component bacterium; however, peaks shared by two isolates as well as peaks that could not be assigned to any individual component isolate were observed. For two-isolate blind-coded samples, bacteria were correctly identified using both similarity coefficient- and biomarker-based strategies, while for blind-coded samples containing more than two isolates, bacteria were more effectively identified using a biomarker-based strategy.

ContributorsZhang, Lin (Author) / Smart, Sonja (Author) / Sandrin, Todd (Author) / New College of Interdisciplinary Arts and Sciences (Contributor)
Created2015-11-05
128573-Thumbnail Image.png
Description

Two distinct monocyte (Mo)/macrophage (Mp) subsets (Ly6Clow and Ly6Chi) orchestrate cardiac recovery process following myocardial infarction (MI). Prostaglandin (PG) E2 is involved in the Mo/Mp-mediated inflammatory response, however, the role of its receptors in Mos/Mps in cardiac healing remains to be determined. Here we show that pharmacological inhibition or gene

Two distinct monocyte (Mo)/macrophage (Mp) subsets (Ly6Clow and Ly6Chi) orchestrate cardiac recovery process following myocardial infarction (MI). Prostaglandin (PG) E2 is involved in the Mo/Mp-mediated inflammatory response, however, the role of its receptors in Mos/Mps in cardiac healing remains to be determined. Here we show that pharmacological inhibition or gene ablation of the Ep3 receptor in mice suppresses accumulation of Ly6Clow Mos/Mps in infarcted hearts. Ep3 deletion in Mos/Mps markedly attenuates healing after MI by reducing neovascularization in peri-infarct zones. Ep3 deficiency diminishes CX3C chemokine receptor 1 (CX3CR1) expression and vascular endothelial growth factor (VEGF) secretion in Mos/Mps by suppressing TGFβ1 signaling and subsequently inhibits Ly6Clow Mos/Mps migration and angiogenesis. Targeted overexpression of Ep3 receptors in Mos/Mps improves wound healing by enhancing angiogenesis. Thus, the PGE2/Ep3 axis promotes cardiac healing after MI by activating reparative Ly6Clow Mos/Mps, indicating that Ep3 receptor activation may be a promising therapeutic target for acute MI.

ContributorsTang, Juan (Author) / Shen, Yujun (Author) / Chen, Guilin (Author) / Wan, Qiangyou (Author) / Wang, Kai (Author) / Zhang, Jian (Author) / Qin, Jing (Author) / Liu, Guizhu (Author) / Zuo, Shengkai (Author) / Tao, Bo (Author) / Yu, Yu (Author) / Wang, Junwen (Author) / Lazarus, Michael (Author) / Yu, Ying (Author) / College of Health Solutions (Contributor)
Created2017-03-03
Description

Panama disease caused by Fusarium oxysporum f. sp. cubense infection on banana is devastating banana plantations worldwide. Biological control has been proposed to suppress Panama disease, though the stability and survival of bio-control microorganisms in field setting is largely unknown. In order to develop a bio-control strategy for this disease,

Panama disease caused by Fusarium oxysporum f. sp. cubense infection on banana is devastating banana plantations worldwide. Biological control has been proposed to suppress Panama disease, though the stability and survival of bio-control microorganisms in field setting is largely unknown. In order to develop a bio-control strategy for this disease, 16S rRNA gene sequencing was used to assess the microbial community of a disease-suppressive soil. Bacillus was identified as the dominant bacterial group in the suppressive soil. For this reason, B. amyloliquefaciens NJN-6 isolated from the suppressive soil was selected as a potential bio-control agent. A bioorganic fertilizer (BIO), formulated by combining this isolate with compost, was applied in nursery pots to assess the bio-control of Panama disease. Results showed that BIO significantly decreased disease incidence by 68.5%, resulting in a doubled yield. Moreover, bacterial community structure was significantly correlated to disease incidence and yield and Bacillus colonization was negatively correlated with pathogen abundance and disease incidence, but positively correlated to yield. In total, the application of BIO altered the rhizo-bacterial community by establishing beneficial strains that dominated the microbial community and decreased pathogen colonization in the banana rhizosphere, which plays an important role in the management of Panama disease.

ContributorsXue, Chao (Author) / Penton, Christopher (Author) / Shen, Zongzhuan (Author) / Zhang, Ruifu (Author) / Huang, Qiwei (Author) / Li, Rong (Author) / Ruan, Yunze (Author) / Shen, Qirong (Author) / New College of Interdisciplinary Arts and Sciences (Contributor)
Created2015-08-05