This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 11 - 20 of 43
Filtering by

Clear all filters

129101-Thumbnail Image.png
Description

Background: 3′untranslated regions (3′UTRs) are poorly understood portions of eukaryotic mRNAs essential for post-transcriptional gene regulation. Sequence elements in 3′UTRs can be target sites for regulatory molecules such as RNA binding proteins and microRNAs (miRNAs), and these interactions can exert significant control on gene networks. However, many such interactions remain uncharacterized

Background: 3′untranslated regions (3′UTRs) are poorly understood portions of eukaryotic mRNAs essential for post-transcriptional gene regulation. Sequence elements in 3′UTRs can be target sites for regulatory molecules such as RNA binding proteins and microRNAs (miRNAs), and these interactions can exert significant control on gene networks. However, many such interactions remain uncharacterized due to a lack of high-throughput (HT) tools to study 3′UTR biology. HT cloning efforts such as the human ORFeome exemplify the potential benefits of genomic repositories for studying human disease, especially in relation to the discovery of biomarkers and targets for therapeutic agents. Currently there are no publicly available human 3′UTR libraries. To address this we have prepared the first version of the human 3′UTRome (h3′UTRome v1) library. The h3′UTRome is produced to a single high quality standard using the same recombinational cloning technology used for the human ORFeome, enabling universal operating methods and high throughput experimentation. The library is thoroughly sequenced and annotated with simple online access to information, and made publicly available through gene repositories at low cost to all scientists with minimal restriction.

Results: The first release of the h3′UTRome library comprises 1,461 human 3′UTRs cloned into Gateway® entry vectors, ready for downstream analyses. It contains 3′UTRs for 985 transcription factors, 156 kinases, 171 RNA binding proteins, and 186 other genes involved in gene regulation and in disease. We demonstrate the feasibility of the h3′UTRome library by screening a panel of 87 3′UTRs for targeting by two miRNAs: let-7c, which is implicated in tumorigenesis, and miR-221, which is implicated in atherosclerosis and heart disease. The panel is enriched with genes involved in the RAS signaling pathway, putative novel targets for the two miRNAs, as well as genes implicated in tumorigenesis and heart disease.

Conclusions: The h3′UTRome v1 library is a modular resource that can be utilized for high-throughput screens to identify regulatory interactions between trans-acting factors and 3′UTRs, Importantly, the library can be customized based on the specifications of the researcher, allowing the systematic study of human 3′UTR biology.

ContributorsKotagama, Kasuen (Author) / Babb, Cody (Author) / Wolter, Justin (Author) / Murphy, Ronan P. (Author) / Mangone, Marco (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-12-09
129120-Thumbnail Image.png
Description

Background: Ebola is one of the most virulent human viral diseases, with a case fatality ratio between 25% to 90%. The 2014 West African outbreaks are the largest and worst in history. There is no specific treatment or effective/safe vaccine against the disease. Hence, control efforts are restricted to basic

Background: Ebola is one of the most virulent human viral diseases, with a case fatality ratio between 25% to 90%. The 2014 West African outbreaks are the largest and worst in history. There is no specific treatment or effective/safe vaccine against the disease. Hence, control efforts are restricted to basic public health preventive (non-pharmaceutical) measures. Such efforts are undermined by traditional/cultural belief systems and customs, characterized by general mistrust and skepticism against government efforts to combat the disease. This study assesses the roles of traditional customs and public healthcare systems on the disease spread.

Methods: A mathematical model is designed and used to assess population-level impact of basic non-pharmaceutical control measures on the 2014 Ebola outbreaks. The model incorporates the effects of traditional belief systems and customs, along with disease transmission within health-care settings and by Ebola-deceased individuals. A sensitivity analysis is performed to determine model parameters that most affect disease transmission. The model is parameterized using data from Guinea, one of the three Ebola-stricken countries. Numerical simulations are performed and the parameters that drive disease transmission, with or without basic public health control measures, determined. Three effectiveness levels of such basic measures are considered.

Results: The distribution of the basic reproduction number (R0) for Guinea (in the absence of basic control measures) is such that R 0 ∈ [0.77,1.35], for the case when the belief systems do not result in more unreported Ebola cases. When such systems inhibit control efforts, the distribution increases to R 0 ∈ [1.15,2.05]. The total Ebola cases are contributed by Ebola-deceased individuals (22%), symptomatic individuals in the early (33%) and latter (45%) infection stages. A significant reduction of new Ebola cases can be achieved by increasing health-care workers’ daily shifts from 8 to 24 hours, limiting hospital visitation to 1 hour and educating the populace to abandon detrimental traditional/cultural belief systems.

Conclusions: The 2014 outbreaks are controllable using a moderately-effective basic public health intervention strategy alone. A much higher (>50%) disease burden would have been recorded in the absence of such intervention.

Created2015-04-23
129124-Thumbnail Image.png
Description

For more than 80 years, Proconsul has held a pivotal position in interpretations of catarrhine evolution in East Africa. From early hypotheses of phyletic relationships with modern apes to more recent debates over their position within Hominoidea, the well-preserved fossils of this genus have been a foundation for most evolutionary

For more than 80 years, Proconsul has held a pivotal position in interpretations of catarrhine evolution in East Africa. From early hypotheses of phyletic relationships with modern apes to more recent debates over their position within Hominoidea, the well-preserved fossils of this genus have been a foundation for most evolutionary scenarios regarding the early diversification of hominoids. The majority of what we "know" about Proconsul, however, derives from abundant younger fossils found at the Kisingiri localities on Rusinga and Mfangano Islands rather than from the smaller samples found at Koru – the locality of the type species, Proconsul africanus – and other Tinderet deposits. One outcome of this is seen in recent attempts to expand the genus "Ugandapithecus" (considered here a junior subjective synonym of Proconsul), wherein much of the Tinderet sample was referred to that genus based primarily on differentiating it from the Kisingiri specimens rather than from the type species, P. africanus. This and other recent taxonomic revisions to Proconsul prompted us to undertake a systematic review of dentognathic specimens attributed to this taxon. Results of our study underscore and extend the substantive distinction of Tinderet and Ugandan Proconsul (i.e., Proconsul sensu stricto) from the Kisingiri fossils, the latter recognized here as a new genus. Specimens of the new genus are readily distinguished from Proconsul sensu stricto by morphology preserved in the P. africanus holotype, M 14084, but also in I1s, lower incisors, upper and lower canines, and especially mandibular characteristics. A number of these differences are more advanced among Kisingiri specimens in the direction of crown hominoids. Proconsul sensu stricto is characterized by a suite of unique features that strongly unite the included species as a clade. There have been decades of contentious debate over the phylogenetic placement of Proconsul (sensu lato), due in part to there being a mixture of primitive and more advanced morphology within the single genus. By recognizing two distinct clades that, in large part, segregate these character states, we believe that better phylogenetic resolution can be achieved.

ContributorsMcNulty, Kieran P. (Author) / Begun, David R. (Author) / Kelley, Jay (Author) / Manthi, Fredrick K. (Author) / Mbua, Emma N. (Author) / School of Human Evolution and Social Change (Contributor)
Created2015-07-01
128887-Thumbnail Image.png
Description

Background: Elucidating the role of the underlying risk factors for severe outcomes of the 2009 A/H1N1 influenza pandemic could be crucial to define priority risk groups in resource-limited settings in future pandemics.

Methods: We use individual-level clinical data on a large series of ARI (acute respiratory infection) hospitalizations from a prospective surveillance system

Background: Elucidating the role of the underlying risk factors for severe outcomes of the 2009 A/H1N1 influenza pandemic could be crucial to define priority risk groups in resource-limited settings in future pandemics.

Methods: We use individual-level clinical data on a large series of ARI (acute respiratory infection) hospitalizations from a prospective surveillance system of the Mexican Social Security medical system to analyze clinical features at presentation, admission delays, selected comorbidities and receipt of seasonal vaccine on the risk of A/H1N1-related death. We considered ARI hospitalizations and inpatient-deaths, and recorded demographic, geographic, and medical information on individual patients during August-December, 2009.

Results: Seasonal influenza vaccination was associated with a reduced risk of death among A/H1N1 inpatients (OR = 0.43 (95% CI: 0.25, 0.74)) after adjustment for age, gender, geography, antiviral treatment, admission delays, comorbidities and medical conditions. However, this result should be interpreted with caution as it could have been affected by factors not directly measured in our study. Moreover, the effect of antiviral treatment against A/H1N1 inpatient death did not reach statistical significance (OR = 0.56 (95% CI: 0.29, 1.10)) probably because only 8.9% of A/H1N1 inpatients received antiviral treatment. Moreover, diabetes (OR = 1.6) and immune suppression (OR = 2.3) were statistically significant risk factors for death whereas asthmatic persons (OR = 0.3) or pregnant women (OR = 0.4) experienced a reduced fatality rate among A/H1N1 inpatients. We also observed an increased risk of death among A/H1N1 inpatients with admission delays >2 days after symptom onset (OR = 2.7). Similar associations were also observed for A/H1N1-negative inpatients.

Conclusions: Geographical variation in identified medical risk factors including prevalence of diabetes and immune suppression may in part explain between-country differences in pandemic mortality burden. Furthermore, access to care including hospitalization without delay and antiviral treatment and are also important factors, as well as vaccination coverage with the 2008–09 trivalent inactivated influenza vaccine.

Created2012-07-16
128829-Thumbnail Image.png
Description

There are multiple hypotheses for human responses to glacial cycling in the Late Pleistocene, including changes in population size, interconnectedness, and mobility. Lithic technological analysis informs us of human responses to environmental change because lithic assemblage characteristics are a reflection of raw material transport, reduction, and discard behaviors that depend

There are multiple hypotheses for human responses to glacial cycling in the Late Pleistocene, including changes in population size, interconnectedness, and mobility. Lithic technological analysis informs us of human responses to environmental change because lithic assemblage characteristics are a reflection of raw material transport, reduction, and discard behaviors that depend on hunter-gatherer social and economic decisions. Pinnacle Point Site 5–6 (PP5-6), Western Cape, South Africa is an ideal locality for examining the influence of glacial cycling on early modern human behaviors because it preserves a long sequence spanning marine isotope stages (MIS) 5, 4, and 3 and is associated with robust records of paleoenvironmental change.

The analysis presented here addresses the question, what, if any, lithic assemblage traits at PP5-6 represent changing behavioral responses to the MIS 5-4-3 interglacial-glacial cycle? It statistically evaluates changes in 93 traits with no a priori assumptions about which traits may significantly associate with MIS. In contrast to other studies that claim that there is little relationship between broad-scale patterns of climate change and lithic technology, we identified the following characteristics that are associated with MIS 4: increased use of quartz, increased evidence for outcrop sources of quartzite and silcrete, increased evidence for earlier stages of reduction in silcrete, evidence for increased flaking efficiency in all raw material types, and changes in tool types and function for silcrete. Based on these results, we suggest that foragers responded to MIS 4 glacial environmental conditions at PP5-6 with increased population or group sizes, ‘place provisioning’, longer and/or more intense site occupations, and decreased residential mobility. Several other traits, including silcrete frequency, do not exhibit an association with MIS. Backed pieces, once they appear in the PP5-6 record during MIS 4, persist through MIS 3. Changing paleoenvironments explain some, but not all temporal technological variability at PP5-6.

ContributorsWilkins, Jayne (Author) / Brown, Kyle S. (Author) / Oestmo, Simen (Author) / Pereira, Telmo (Author) / Ranhom, Kathryn L. (Author) / Schoville, Benjamin (Author) / Marean, Curtis (Author) / School of Human Evolution and Social Change (Contributor)
Created2017-03-29
128864-Thumbnail Image.png
Description

The Whistler Squat Quarry (TMM 41372) of the lower Devil’s Graveyard Formation in Trans-Pecos Texas is a middle Eocene fossil locality attributed to Uintan biochronological zone Ui1b. Specimens from the Whistler Squat Quarry were collected immediately above a volcanic tuff with prior K/Ar ages ranging from ∼47–50 Ma and below

The Whistler Squat Quarry (TMM 41372) of the lower Devil’s Graveyard Formation in Trans-Pecos Texas is a middle Eocene fossil locality attributed to Uintan biochronological zone Ui1b. Specimens from the Whistler Squat Quarry were collected immediately above a volcanic tuff with prior K/Ar ages ranging from ∼47–50 Ma and below a tuff previously dated to ∼44 Ma. New [superscript 40]Ar/[superscript 39]Ar analyses of both of the original tuff samples provide statistically indistinguishable ages of 44.88±0.04 Ma for the lower tuff and 45.04±0.10 Ma for the upper tuff. These dates are compatible with magnetically reversed sediments at the site attributable to C20r (43.505–45.942 Ma) and a stratigraphic position above a basalt dated to 46.80 Ma. Our reanalysis of mammalian specimens from the Whistler Squat Quarry and a stratigraphically equivalent locality significantly revises their faunal lists, confirms the early Uintan designation for the sites, and highlights several biogeographic and biochronological differences when compared to stratotypes in the Bridger and Uinta Formations. Previous suggestions of regional endemism in the early Uintan are supported by the recognition of six endemic taxa (26% of mammalian taxa) from the Whistler Squat Quarry alone, including three new taxa. The revised faunal list for the Whistler Squat Quarry also extends the biostratigraphic ranges of nine non-endemic mammalian taxa to Ui1b.

Created2014-07-02
129017-Thumbnail Image.png
Description

Background: Dengue fever is a mosquito-borne disease that affects between 50 and 100 million people each year. Increasing our understanding of the heterogeneous transmission patterns of dengue at different spatial scales could have considerable public health value by guiding intervention strategies.

Methods: Based on the weekly number of dengue cases in Perú by

Background: Dengue fever is a mosquito-borne disease that affects between 50 and 100 million people each year. Increasing our understanding of the heterogeneous transmission patterns of dengue at different spatial scales could have considerable public health value by guiding intervention strategies.

Methods: Based on the weekly number of dengue cases in Perú by province, we investigated the association between dengue incidence during the period 1994-2008 and demographic and climate factors across geographic regions of the country.

Results: Our findings support the presence of significant differences in the timing of dengue epidemics between jungle and coastal regions, with differences significantly associated with the timing of the seasonal cycle of mean temperature.

Conclusions: Dengue is highly persistent in jungle areas of Perú where epidemics peak most frequently around March when rainfall is abundant. Differences in the timing of dengue epidemics in jungle and coastal regions are significantly associated with the seasonal temperature cycle. Our results suggest that dengue is frequently imported into coastal regions through infective sparks from endemic jungle areas and/or cities of other neighboring endemic countries, where propitious environmental conditions promote year-round mosquito breeding sites. If jungle endemic areas are responsible for multiple dengue introductions into coastal areas, our findings suggest that curtailing the transmission of dengue in these most persistent areas could lead to significant reductions in dengue incidence in coastal areas where dengue incidence typically reaches low levels during the dry season.

Created2011-06-08
129018-Thumbnail Image.png
Description

Background: The role of demographic factors, climatic conditions, school cycles, and connectivity patterns in shaping the spatio-temporal dynamics of pandemic influenza is not clearly understood. Here we analyzed the spatial, age and temporal evolution of the 2009 A/H1N1 influenza pandemic in Chile, a southern hemisphere country covering a long and narrow

Background: The role of demographic factors, climatic conditions, school cycles, and connectivity patterns in shaping the spatio-temporal dynamics of pandemic influenza is not clearly understood. Here we analyzed the spatial, age and temporal evolution of the 2009 A/H1N1 influenza pandemic in Chile, a southern hemisphere country covering a long and narrow strip comprising latitudes 17°S to 56°S.

Methods: We analyzed the dissemination patterns of the 2009 A/H1N1 pandemic across 15 regions of Chile based on daily hospitalizations for severe acute respiratory disease and laboratory confirmed A/H1N1 influenza infection from 01-May to 31-December, 2009. We explored the association between timing of pandemic onset and peak pandemic activity and several geographical and demographic indicators, school vacations, climatic factors, and international passengers. We also estimated the reproduction number (R) based on the growth rate of the exponential pandemic phase by date of symptoms onset, estimated using maximum likelihood methods.

Results: While earlier pandemic onset was associated with larger population size, there was no association with connectivity, demographic, school or climatic factors. In contrast, there was a latitudinal gradient in peak pandemic timing, representing a 16-39-day lag in disease activity from the southern regions relative to the northernmost region (P < 0.001). Geographical differences in latitude of Chilean regions, maximum temperature and specific humidity explained 68.5% of the variability in peak timing (P = 0.01). In addition, there was a decreasing gradient in reproduction number from south to north Chile (P < 0.0001). The regional mean R estimates were 1.6-2.0, 1.3-1.5, and 1.2-1.3 for southern, central and northern regions, respectively, which were not affected by the winter vacation period.

Conclusions: There was a lag in the period of most intense 2009 pandemic influenza activity following a South to North traveling pattern across regions of Chile, significantly associated with geographical differences in minimum temperature and specific humidity. The latitudinal gradient in timing of pandemic activity was accompanied by a gradient in reproduction number (P < 0.0001). Intensified surveillance strategies in colder and drier southern regions could lead to earlier detection of pandemic influenza viruses and improved control outcomes.

Created2012-11-13
128766-Thumbnail Image.png
Description

Background: Highly refined surveillance data on the 2009 A/H1N1 influenza pandemic are crucial to quantify the spatial and temporal characteristics of the pandemic. There is little information about the spatial-temporal dynamics of pandemic influenza in South America. Here we provide a quantitative description of the age-specific morbidity pandemic patterns across administrative

Background: Highly refined surveillance data on the 2009 A/H1N1 influenza pandemic are crucial to quantify the spatial and temporal characteristics of the pandemic. There is little information about the spatial-temporal dynamics of pandemic influenza in South America. Here we provide a quantitative description of the age-specific morbidity pandemic patterns across administrative areas of Peru.

Methods: We used daily cases of influenza-like-illness, tests for A/H1N1 influenza virus infections, and laboratory-confirmed A/H1N1 influenza cases reported to the epidemiological surveillance system of Peru's Ministry of Health from May 1 to December 31, 2009. We analyzed the geographic spread of the pandemic waves and their association with the winter school vacation period, demographic factors, and absolute humidity. We also estimated the reproduction number and quantified the association between the winter school vacation period and the age distribution of cases.

Results: The national pandemic curve revealed a bimodal winter pandemic wave, with the first peak limited to school age children in the Lima metropolitan area, and the second peak more geographically widespread. The reproduction number was estimated at 1.6–2.2 for the Lima metropolitan area and 1.3–1.5 in the rest of Peru. We found a significant association between the timing of the school vacation period and changes in the age distribution of cases, while earlier pandemic onset was correlated with large population size. By contrast there was no association between pandemic dynamics and absolute humidity.

Conclusions: Our results indicate substantial spatial variation in pandemic patterns across Peru, with two pandemic waves of varying timing and impact by age and region. Moreover, the Peru data suggest a hierarchical transmission pattern of pandemic influenza A/H1N1 driven by large population centers. The higher reproduction number of the first pandemic wave could be explained by high contact rates among school-age children, the age group most affected during this early wave.

Created2011-06-21
128770-Thumbnail Image.png
Description

Urban environmental measurements and observational statistics should reflect the properties generated over an adjacent area of adequate length where homogeneity is usually assumed. The determination of this characteristic source area that gives sufficient representation of the horizontal coverage of a sensing instrument or the fetch of transported quantities is of

Urban environmental measurements and observational statistics should reflect the properties generated over an adjacent area of adequate length where homogeneity is usually assumed. The determination of this characteristic source area that gives sufficient representation of the horizontal coverage of a sensing instrument or the fetch of transported quantities is of critical importance to guide the design and implementation of urban landscape planning strategies. In this study, we aim to unify two different methods for estimating source areas, viz. the statistical correlation method commonly used by geographers for landscape fragmentation and the mechanistic footprint model by meteorologists for atmospheric measurements. Good agreement was found in the intercomparison of the estimate of source areas by the two methods, based on 2-m air temperature measurement collected using a network of weather stations. The results can be extended to shed new lights on urban planning strategies, such as the use of urban vegetation for heat mitigation. In general, a sizable patch of landscape is required in order to play an effective role in regulating the local environment, proportional to the height at which stakeholders’ interest is mainly concerned.

ContributorsWang, Zhi-Hua (Author) / Fan, Chao (Author) / Myint, Soe (Author) / Wang, Chenghao (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-11-10