This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 30
Filtering by

Clear all filters

Description

Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade and tree shade on thermal comfort through meteorological observations and field surveys at a pedestrian mall on Arizona State University's Tempe campus. During the course of 1

Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade and tree shade on thermal comfort through meteorological observations and field surveys at a pedestrian mall on Arizona State University's Tempe campus. During the course of 1 year, on selected clear calm days representative of each season, we conducted hourly meteorological transects from 7:00 a.m. to 6:00 p.m. and surveyed 1284 people about their thermal perception, comfort, and preferences. Shade lowered thermal sensation votes by approximately 1 point on a semantic differential 9-point scale, increasing thermal comfort in all seasons except winter. Shade type (tree or solar canopy) did not significantly impact perceived comfort, suggesting that artificial and natural shades are equally efficient in hot dry climates. Globe temperature explained 51 % of the variance in thermal sensation votes and was the only statistically significant meteorological predictor. Important non-meteorological factors included adaptation, thermal comfort vote, thermal preference, gender, season, and time of day. A regression of subjective thermal sensation on physiological equivalent temperature yielded a neutral temperature of 28.6 °C. The acceptable comfort range was 19.1 °C-38.1 °C with a preferred temperature of 20.8 °C. Respondents exposed to above neutral temperature felt more comfortable if they had been in air-conditioning 5 min prior to the survey, indicating a lagged response to outdoor conditions. Our study highlights the importance of active solar access management in hot urban areas to reduce thermal stress.

ContributorsMiddel, Ariane (Author) / Selover, Nancy (Author) / Hagen, Bjorn (Author) / Chhetri, Nalini (Author)
Created2015-04-13
Description

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the three-dimensional microclimate model ENVI-met. The model was validated using weather observations from the North Desert Village (NDV) landscape experiment, located on the Arizona State University's Polytechnic campus. The NDV is an ideal site to determine the model's input parameters, since it is a controlled environment recreating three prevailing residential landscape types in the Phoenix metropolitan area (mesic, oasis, and xeric). After validation, we designed five neighborhoods with different urban forms that represent a realistic cross-section of typical residential neighborhoods in Phoenix. The scenarios follow the Local Climate Zone (LCZ) classification scheme after Stewart and Oke. We then combined the neighborhoods with three landscape designs and, using ENVI-met, simulated microclimate conditions for these neighborhoods for a typical summer day. Results were analyzed in terms of mid-afternoon air temperature distribution and variation, ventilation, surface temperatures, and shading. Findings show that advection is important for the distribution of within-design temperatures and that spatial differences in cooling are strongly related to solar radiation and local shading patterns. In mid-afternoon, dense urban forms can create local cool islands. Our approach suggests that the LCZ concept is useful for planning and design purposes.

ContributorsMiddel, Ariane (Author) / Hab, Kathrin (Author) / Brazel, Anthony J. (Author) / Martin, Chris A. (Author) / Guhathakurta, Subhrajit (Author)
Created2014-02
141503-Thumbnail Image.png
Description

This paper studies the effect of targeted observations on state and parameter estimates determined with Kalman filter data assimilation (DA) techniques. We first provide an analytical result demonstrating that targeting observations within the Kalman filter for a linear model can significantly reduce state estimation error as opposed to fixed or

This paper studies the effect of targeted observations on state and parameter estimates determined with Kalman filter data assimilation (DA) techniques. We first provide an analytical result demonstrating that targeting observations within the Kalman filter for a linear model can significantly reduce state estimation error as opposed to fixed or randomly located observations. We next conduct observing system simulation experiments for a chaotic model of meteorological interest, where we demonstrate that the local ensemble transform Kalman filter (LETKF) with targeted observations based on largest ensemble variance is skillful in providing more accurate state estimates than the LETKF with randomly located observations. Additionally, we find that a hybrid ensemble Kalman filter parameter estimation method accurately updates model parameters within the targeted observation context to further improve state estimation.

ContributorsBellsky, Thomas (Author) / Kostelich, Eric (Author) / Mahalov, Alex (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-06-01
Description

The effects of urbanization on ozone levels have been widely investigated over cities primarily located in temperate and/or humid regions. In this study, nested WRF-Chem simulations with a finest grid resolution of 1 km are conducted to investigate ozone concentrations O3 due to urbanization within cities in arid/semi-arid environments. First,

The effects of urbanization on ozone levels have been widely investigated over cities primarily located in temperate and/or humid regions. In this study, nested WRF-Chem simulations with a finest grid resolution of 1 km are conducted to investigate ozone concentrations O3 due to urbanization within cities in arid/semi-arid environments. First, a method based on a shape preserving Monotonic Cubic Interpolation (MCI) is developed and used to downscale anthropogenic emissions from the 4 km resolution 2005 National Emissions Inventory (NEI05) to the finest model resolution of 1 km. Using the rapidly expanding Phoenix metropolitan region as the area of focus, we demonstrate the proposed MCI method achieves ozone simulation results with appreciably improved correspondence to observations relative to the default interpolation method of the WRF-Chem system. Next, two additional sets of experiments are conducted, with the recommended MCI approach, to examine impacts of urbanization on ozone production: (1) the urban land cover is included (i.e., urbanization experiments) and, (2) the urban land cover is replaced with the region's native shrubland. Impacts due to the presence of the built environment on O3 are highly heterogeneous across the metropolitan area. Increased near surface O3 due to urbanization of 10–20 ppb is predominantly a nighttime phenomenon while simulated impacts during daytime are negligible. Urbanization narrows the daily O3 range (by virtue of increasing nighttime minima), an impact largely due to the region's urban heat island. Our results demonstrate the importance of the MCI method for accurate representation of the diurnal profile of ozone, and highlight its utility for high-resolution air quality simulations for urban areas.

ContributorsLi, Jialun (Author) / Georgescu, Matei (Author) / Hyde, Peter (Author) / Mahalov, Alex (Author) / Moustaoui, Mohamed (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2014-11-01
127861-Thumbnail Image.png
Description

An interesting occurrence of a Rossby wave breaking event observed during the VORCORE experiment is presented and explained. Twenty-seven balloons were launched inside the Antarctic polar vortex. Almost all of these balloons evolved in the stratosphere around 500K within the vortex, except the one launched on 28 October 2005. In

An interesting occurrence of a Rossby wave breaking event observed during the VORCORE experiment is presented and explained. Twenty-seven balloons were launched inside the Antarctic polar vortex. Almost all of these balloons evolved in the stratosphere around 500K within the vortex, except the one launched on 28 October 2005. In this case, the balloon was caught within a tongue of high potential vorticity (PV), and was ejected from the polar vortex. The evolution of this event is studied for the period between 19 and 25 November 2005. It is found that at the beginning of this period, the polar vortex experienced distortions due to the presence of Rossby waves. Then, these waves break and a tongue of high PV develops. On 25 November, the tongue became separated from the vortex and the balloon was ejected into the surf zone. Lagrangian simulations demonstrate that the air masses surrounding the balloon after its ejection were originating from the vortex edge. The wave breaking and the development of the tongue are confined within a region where a planetary Quasi-Stationary Wave 1 (QSW1) induces wind speeds with weaker values. The QSW1 causes asymmetry in the wind speed and the horizontal PV gradient along the edge of the polar vortex, resulting in a localized jet. Rossby waves with smaller scales propagating on top of this jet amplify as they enter the jet exit region and then break. The role of the QSW1 on the formation of the weak flow conditions that caused the non-linear wave breaking observed near the vortex edge is confirmed by three-dimensional numerical simulations using forcing with and without the contribution of the QSW1.

ContributorsMoustaoui, Mohamed (Author) / Teitelbaum, H. (Author) / Mahalov, Alex (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-04-16
129405-Thumbnail Image.png
Description

The Dawn Framing Camera (FC) has imaged the northern hemisphere of the Asteroid (4) Vesta at high spatial resolution and coverage. This study represents the first investigation of the overall geology of the northern hemisphere (22–90°N, quadrangles Av-1, 2, 3, 4 and 5) using these unique Dawn mission observations. We

The Dawn Framing Camera (FC) has imaged the northern hemisphere of the Asteroid (4) Vesta at high spatial resolution and coverage. This study represents the first investigation of the overall geology of the northern hemisphere (22–90°N, quadrangles Av-1, 2, 3, 4 and 5) using these unique Dawn mission observations. We have compiled a morphologic map and performed crater size–frequency distribution (CSFD) measurements to date the geologic units. The hemisphere is characterized by a heavily cratered surface with a few highly subdued basins up to ∼200 km in diameter. The most widespread unit is a plateau (cratered highland unit), similar to, although of lower elevation than the equatorial Vestalia Terra plateau. Large-scale troughs and ridges have regionally affected the surface. Between ∼180°E and ∼270°E, these tectonic features are well developed and related to the south pole Veneneia impact (Saturnalia Fossae trough unit), elsewhere on the hemisphere they are rare and subdued (Saturnalia Fossae cratered unit). In these pre-Rheasilvia units we observed an unexpectedly high frequency of impact craters up to ∼10 km in diameter, whose formation could in part be related to the Rheasilvia basin-forming event. The Rheasilvia impact has potentially affected the northern hemisphere also with S–N small-scale lineations, but without covering it with an ejecta blanket. Post-Rheasilvia impact craters are small (<60 km in diameter) and show a wide range of degradation states due to impact gardening and mass wasting processes. Where fresh, they display an ejecta blanket, bright rays and slope movements on walls. In places, crater rims have dark material ejecta and some crater floors are covered by ponded material interpreted as impact melt.

ContributorsRuesch, Ottaviano (Author) / Hiesinger, Harald (Author) / Blewett, David T. (Author) / Williams, David (Author) / Buczkowski, Debra (Author) / Scully, Jennifer (Author) / Yingst, R. Aileen (Author) / Roatsch, Thomas (Author) / Preusker, Frank (Author) / Jaumann, Ralf (Author) / Russell, Christopher T. (Author) / Raymond, Carol A. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-01
129404-Thumbnail Image.png
Description

Oppia Quadrangle Av-10 (288–360°E, ±22°) is a junction of key geologic features that preserve a rough history of Asteroid (4) Vesta and serves as a case study of using geologic mapping to define a relative geologic timescale. Clear filter images, stereo-derived topography, slope maps, and multispectral color-ratio images from the

Oppia Quadrangle Av-10 (288–360°E, ±22°) is a junction of key geologic features that preserve a rough history of Asteroid (4) Vesta and serves as a case study of using geologic mapping to define a relative geologic timescale. Clear filter images, stereo-derived topography, slope maps, and multispectral color-ratio images from the Framing Camera on NASA’s Dawn spacecraft served as basemaps to create a geologic map and investigate the spatial and temporal relationships of the local stratigraphy. Geologic mapping reveals the oldest map unit within Av-10 is the cratered highlands terrain which possibly represents original crustal material on Vesta that was then excavated by one or more impacts to form the basin Feralia Planitia. Saturnalia Fossae and Divalia Fossae ridge and trough terrains intersect the wall of Feralia Planitia indicating that this impact basin is older than both the Veneneia and Rheasilvia impact structures, representing Pre-Veneneian crustal material. Two of the youngest geologic features in Av-10 are Lepida (∼45 km diameter) and Oppia (∼40 km diameter) impact craters that formed on the northern and southern wall of Feralia Planitia and each cross-cuts a trough terrain. The ejecta blanket of Oppia is mapped as ‘dark mantle’ material because it appears dark orange in the Framing Camera ‘Clementine-type’ color-ratio image and has a diffuse, gradational contact distributed to the south across the rim of Rheasilvia. Mapping of surface material that appears light orange in color in the Framing Camera ‘Clementine-type’ color-ratio image as ‘light mantle material’ supports previous interpretations of an impact ejecta origin. Some light mantle deposits are easily traced to nearby source craters, but other deposits may represent distal ejecta deposits (emplaced >5 crater radii away) in a microgravity environment.

ContributorsGarry, W. Brent (Author) / Williams, David (Author) / Yingst, R. Aileen (Author) / Mest, Scott C. (Author) / Buczkowski, Debra L. (Author) / Tosi, Federico (Author) / Schaefer, Michael (Author) / Le Corre, Lucille (Author) / Reddy, Vishnu (Author) / Jaumann, Ralf (Author) / Pieters, Carle M. (Author) / Russell, Christopher T. (Author) / Raymond, Carol A. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-01
129403-Thumbnail Image.png
Description

The Quadrangles Av-11 and Av-12 on Vesta are located at the northern rim of the giant Rheasilvia south polar impact basin. The primary geologic units in Av-11 and Av-12 include material from the Rheasilvia impact basin formation, smooth material and different types of impact crater structures (such as bimodal craters,

The Quadrangles Av-11 and Av-12 on Vesta are located at the northern rim of the giant Rheasilvia south polar impact basin. The primary geologic units in Av-11 and Av-12 include material from the Rheasilvia impact basin formation, smooth material and different types of impact crater structures (such as bimodal craters, dark and bright crater ray material and dark ejecta material). Av-11 and Av-12 exhibit almost the full range of mass wasting features observed on Vesta, such as slump blocks, spur-and-gully morphologies and landslides within craters. Processes of collapse, slope instability and seismically triggered events force material to slump down crater walls or scarps and produce landslides or rotational slump blocks. The spur-and-gully morphology that is known to form on Mars is also observed on Vesta; however, on Vesta this morphology formed under dry conditions.

ContributorsKrohn, K. (Author) / Jaumann, R. (Author) / Otto, K. (Author) / Hoogenboom, T. (Author) / Wagner, R. (Author) / Buczkowski, D. L. (Author) / Garry, B. (Author) / Williams, David (Author) / Yingst, R. A. (Author) / Scully, J. (Author) / De Sanctis, M. C. (Author) / Kneissl, T. (Author) / Schmedemann, N. (Author) / Kersten, E. (Author) / Stephan, K. (Author) / Matz, K-D. (Author) / Pieters, C. M. (Author) / Preusker, F. (Author) / Roatsch, T. (Author) / Schenk, P. (Author) / Russell, C. T. (Author) / Raymond, C. A. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-01
129402-Thumbnail Image.png
Description

A variety of geologic landforms and features are observed within quadrangle Av-13 Tuccia in the southern hemisphere of Vesta. The quadrangle covers parts of the highland Vestalia Terra as well as the floors of the large Rheasilvia and Veneneia impact basins, which results in a substantial elevation difference of more

A variety of geologic landforms and features are observed within quadrangle Av-13 Tuccia in the southern hemisphere of Vesta. The quadrangle covers parts of the highland Vestalia Terra as well as the floors of the large Rheasilvia and Veneneia impact basins, which results in a substantial elevation difference of more than 40 km between the northern and the southern portions of the quadrangle. Measurements of crater size–frequency distributions within and surrounding the Rheasilvia basin indicate that gravity-driven mass wasting in the interior of the basin has been important, and that the basin has a more ancient formation age than would be expected from the crater density on the basin floor alone. Subsequent to its formation, Rheasilvia was superimposed by several mid-sized impact craters. The most prominent craters are Tuccia, Eusebia, Vibidia, Galeria, and Antonia, whose geology and formation ages are investigated in detail in this work. These impact structures provide a variety of morphologies indicating different sorts of subsequent impact-related or gravity-driven mass wasting processes. Understanding the geologic history of the relatively young craters in the Rheasilvia basin is important in order to understand the even more degraded craters in other regions of Vesta.

ContributorsKneissl, T. (Author) / Schmedemann, N. (Author) / Reddy, V. (Author) / Williams, David (Author) / Walter, S. H. G. (Author) / Neesemann, A. (Author) / Michael, G. G. (Author) / Jaumann, R. (Author) / Krohn, K. (Author) / Preusker, F. (Author) / Roatsch, T. (Author) / Le Corre, L. (Author) / Nathues, A. (Author) / Hoffmann, M. (Author) / Schaefer, M. (Author) / Buczkowski, D. (Author) / Garry, W. B. (Author) / Yingst, R. A. (Author) / Mest, S. C. (Author) / Russell, C. T. (Author) / Raymond, C. A. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-01
129401-Thumbnail Image.png
Description

As part of systematic global mapping of Vesta using data returned by the Dawn spacecraft, we have produced a geologic map of the north pole quadrangle, Av-1 Albana. Extensive seasonal shadows were present in the north polar region at the time of the Dawn observations, limiting the ability to ma

As part of systematic global mapping of Vesta using data returned by the Dawn spacecraft, we have produced a geologic map of the north pole quadrangle, Av-1 Albana. Extensive seasonal shadows were present in the north polar region at the time of the Dawn observations, limiting the ability to map morphological features and employ color or spectral data for determination of composition. The major recognizable units present include ancient cratered highlands and younger crater-related units (undivided ejecta, and mass-wasting material on crater floors). The antipode of Vesta’s large southern impact basins, Rheasilvia and Veneneia, lie within or near the Av-1 quadrangle. Therefore it is of particular interest to search for evidence of features of the kind that are found at basin antipodes on other planetary bodies. Albedo markings known as lunar swirls are correlated with basin antipodes and the presence of crustal magnetic anomalies on the Moon, but lighting conditions preclude recognition of such albedo features in images of the antipode of Vesta’s Rheasilvia basin. “Hilly and lineated terrain,” found at the antipodes of large basins on the Moon and Mercury, is not present at the Rheasilvia or Veneneia antipodes. We have identified small-scale linear depressions that may be related to increased fracturing in the Rheasilvia and Veneneia antipodal areas, consistent with impact-induced stresses (Buczkowski, D. et al. [2012b]. Analysis of the large scale troughs on Vesta and correlation to a model of giant impact into a differentiated asteroid. Geol. Soc. of America Annual Meeting. Abstract 152-4; Bowling, T.J. et al. [2013]. J. Geophys. Res. – Planets, 118. http://dx.doi.org/10.1002/jgre.20123). The general high elevation of much of the north polar region could, in part, be a result of uplift caused by the Rheasilvia basin-forming impact, as predicted by numerical modeling (Bowling, T.J. et al. [2013]. J. Geophys. Res. – Planets, 118. http://dx.doi.org/10.1002/jgre.20123). However, stratigraphic and crater size–frequency distribution analysis indicate that the elevated terrain predates the two southern basins and hence is likely a remnant of the ancient vestan crust. The lack of large-scale morphological features at the basin antipodes can be attributed to weakened antipodal constructive interference of seismic waves caused by an oblique impact or by Vesta’s non-spherical shape, or by attenuation of seismic waves because of the physical properties of Vesta’s interior. A first-order analysis of the Dawn global digital elevation model for Vesta indicates that areas of permanent shadow are unlikely to be present in the vicinity of the north pole.

ContributorsBlewett, David T. (Author) / Buczkowski, Debra L. (Author) / Ruesch, Ottaviano (Author) / Scully, Jennifer E. (Author) / O'Brien, David P. (Author) / Gaskell, Robert (Author) / Roatsch, Thomas (Author) / Bowling, Timothy J. (Author) / Ermakov, Anton (Author) / Hiesinger, Harald (Author) / Williams, David (Author) / Raymond, Carol A. (Author) / Russell, Christopher T. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-01