This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 11 - 20 of 21
Filtering by

Clear all filters

129647-Thumbnail Image.png
Description

The hysteresis effect in diurnal cycles of net radiation R-n and ground heat flux G(0) has been observed in many studies, while the governing mechanism remains vague. In this study, we link the phenomenology of hysteresis loops to the wave phase difference between the diurnal evolutions of various terms in

The hysteresis effect in diurnal cycles of net radiation R-n and ground heat flux G(0) has been observed in many studies, while the governing mechanism remains vague. In this study, we link the phenomenology of hysteresis loops to the wave phase difference between the diurnal evolutions of various terms in the surface energy balance. R-n and G(0) are parameterized with the incoming solar radiation and the surface temperature as two control parameters of the surface energy partitioning. The theoretical analysis shows that the vertical water flux W and the scaled ratio A(s)*/A(T)* (net shortwave radiation to outgoing longwave radiation) play crucial roles in shaping hysteresis loops of R-n and G(0). Comparisons to field measurements indicate that hysteresis loops for different land covers can be well captured by the theoretical model, which is also consistent with Camuffo-Bernadi formula. This study provides insight into the surface partitioning and temporal evolution of the energy budget at the land surface.

ContributorsSun, Ting (Author) / Wang, Zhi-Hua (Author) / Ni, Guang-Heng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2013-09-18
128657-Thumbnail Image.png
Description

This study examines the spatial and temporal patterns of the surface urban heat island (SUHI) intensity in the Phoenix metropolitan area and the relationship with land use land cover (LULC) change between 2000 and 2014. The objective is to identify specific regions in Phoenix that have been increasingly heated and

This study examines the spatial and temporal patterns of the surface urban heat island (SUHI) intensity in the Phoenix metropolitan area and the relationship with land use land cover (LULC) change between 2000 and 2014. The objective is to identify specific regions in Phoenix that have been increasingly heated and cooled to further understand how LULC change influences the SUHI intensity. The data employed include MODerate-resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) 8-day composite June imagery, and classified LULC maps generated using 2000 and 2014 Landsat imagery. Results show that the regions that experienced the most significant LST changes during the study period are primarily on the outskirts of the Phoenix metropolitan area for both daytime and nighttime. The conversion to urban, residential, and impervious surfaces from all other LULC types has been identified as the primary cause of the UHI effect in Phoenix. Vegetation cover has been shown to significantly lower LST for both daytime and nighttime due to its strong cooling effect by producing more latent heat flux and less sensible heat flux. We suggest that urban planners, decision-makers, and city managers formulate new policies and regulations that encourage residential, commercial, and industrial developers to include more vegetation when planning new construction.

ContributorsWang, Chuyuan (Author) / Myint, Soe (Author) / Wang, Zhi-Hua (Author) / Song, Jiyun (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-02-26
128633-Thumbnail Image.png
Description

Background: Low physical activity (PA) and fruit and vegetable (F&V) consumption in early childhood are continued public health challenges. This manuscript describes outcomes from two pilot studies for Sustainability via Active Garden Education (SAGE), a program designed to increase PA and F&V consumption among 3 to 5 year old children.

Methods: SAGE was

Background: Low physical activity (PA) and fruit and vegetable (F&V) consumption in early childhood are continued public health challenges. This manuscript describes outcomes from two pilot studies for Sustainability via Active Garden Education (SAGE), a program designed to increase PA and F&V consumption among 3 to 5 year old children.

Methods: SAGE was developed using community-based participatory research (CBPR) and delivered to children (N = 89) in early care and education centers (ECEC, N = 6) in two US cities. Children participated in 12 one-hour sessions that included songs, games, and interactive learning activities involving garden maintenance and taste tests. We evaluated reach, efficacy, adoption, implementation, and potential for maintenance of SAGE following the RE-AIM framework. Reach was evaluated by comparing demographic characteristics among SAGE participants and residents of target geographic areas. Efficacy was evaluated with accelerometer-measured PA, F&V consumption, and eating in the absence of hunger among children, parenting practices regarding PA, and home availability of F&V. Adoption was evaluated by the number of ECEC that participated relative to the number of ECEC that were recruited. Implementation was evaluated by completion rates of planned SAGE lessons and activities, and potential for maintenance was evaluated with a parent satisfaction survey.

Results: SAGE reached ECEC in neighborhoods representing a wide range of socioeconomic status, with participants’ sociodemographic characteristics representing those of the intervention areas. Children significantly increased PA during SAGE lessons compared to usual lessons, but they also consumed more calories in the absence of hunger in post- vs. pre-intervention tests (both p < .05). Parent reports did not suggest changes in F&V consumption, parenting PA practices, or home F&V availability, possibly due to low parent engagement. ECEC had moderate-to-high implementation of SAGE lessons and curriculum. Potential for maintenance was strong, with parents rating SAGE favorably and reporting increases in knowledge about PA and nutrition guidelines for young children.

Conclusions: SAGE successfully translated national PA guidelines to practice for young children but was less successful with nutrition guidelines. High adoption and implementation and favorable parent reports suggest high potential for program sustainability. Further work to engage parents and families of young children in ECEC-based PA and nutrition programming is needed.

Created2017-03-10
128971-Thumbnail Image.png
Description

Background: Latino preschoolers (3-5 year old children) have among the highest rates of obesity. Low levels of physical activity (PA) are a risk factor for obesity. Characterizing what Latino parents do to encourage or discourage their preschooler to be physically active can help inform interventions to increase their PA. The objective

Background: Latino preschoolers (3-5 year old children) have among the highest rates of obesity. Low levels of physical activity (PA) are a risk factor for obesity. Characterizing what Latino parents do to encourage or discourage their preschooler to be physically active can help inform interventions to increase their PA. The objective was therefore to develop and assess the psychometrics of a new instrument: the Preschooler Physical Activity Parenting Practices (PPAPP) among a Latino sample, to assess parenting practices used to encourage or discourage PA among preschool-aged children.

Methods: Cross-sectional study of 240 Latino parents who reported the frequency of using PA parenting practices. 95% of respondents were mothers; 42% had more than a high school education. Child mean age was 4.5 (±0.9) years (52% male). Test-retest reliability was assessed in 20%, 2 weeks later. We assessed the fit of a priori models using Confirmatory factor analyses (CFA). In a separate sub-sample (35%), preschool-aged children wore accelerometers to assess associations with their PA and PPAPP subscales.

Results: The a-priori models showed poor fit to the data. A modified factor structure for encouraging PPAPP had one multiple-item scale: engagement (15 items), and two single-items (have outdoor toys; not enroll in sport-reverse coded). The final factor structure for discouraging PPAPP had 4 subscales: promote inactive transport (3 items), promote screen time (3 items), psychological control (4 items) and restricting for safety (4 items). Test-retest reliability (ICC) for the two scales ranged from 0.56-0.85. Cronbach’s alphas ranged from 0.5-0.9. Several sub-factors correlated in the expected direction with children’s objectively measured PA.

Conclusion: The final models for encouraging and discouraging PPAPP had moderate to good fit, with moderate to excellent test-retest reliabilities. The PPAPP should be further evaluated to better assess its associations with children’s PA and offers a new tool for measuring PPAPP among Latino families with preschool-aged children.

Created2014-01-15
128950-Thumbnail Image.png
Description

Background: Physical activity (PA) public health programming has been widely used in Mexico; however, few studies have documented individual and organizational factors that might be used to evaluate their public health impact. The RE-AIM framework is an evaluation tool that examines individual and organizational factors of public health programs. The

Background: Physical activity (PA) public health programming has been widely used in Mexico; however, few studies have documented individual and organizational factors that might be used to evaluate their public health impact. The RE-AIM framework is an evaluation tool that examines individual and organizational factors of public health programs. The purpose of this study was to use the RE-AIM framework to determine the degree to which PA programs in Mexico reported individual and organizational factors and to investigate whether reporting differed by the program’s funding source.

Methods: Public health programs promoting PA were systematically identified during 2008–2013 and had to have an active program website. Initial searches produced 23 possible programs with 12 meeting inclusion criteria. A coding sheet was developed to capture behavioral, outcome and RE-AIM indicators from program websites.

Results: In addition to targeting PA, five (42%) programs also targeted dietary habits and the most commonly reported outcome was change in body composition (58%). Programs reported an average of 11.1 (±3.9) RE-AIM indicator items (out of 27 total). On average, 45% reported reach indicators, 34% reported efficacy/effectiveness indicators, 60% reported adoption indicators, 40% reported implementation indicators, and 35% reported maintenance indicators. The proportion of RE-AIM indicators reported did not differ significantly for programs that were government supported (M = 10, SD = 3.1) and programs that were partially or wholly privately or corporately supported (M = 12.0, SD = 4.4).

Conclusion: While reach and adoption of these programs were most commonly reported, there is a need for stronger evaluation of behavioral and health outcomes before the public health impact of these programs can be established.

Created2015-01-27
128770-Thumbnail Image.png
Description

Urban environmental measurements and observational statistics should reflect the properties generated over an adjacent area of adequate length where homogeneity is usually assumed. The determination of this characteristic source area that gives sufficient representation of the horizontal coverage of a sensing instrument or the fetch of transported quantities is of

Urban environmental measurements and observational statistics should reflect the properties generated over an adjacent area of adequate length where homogeneity is usually assumed. The determination of this characteristic source area that gives sufficient representation of the horizontal coverage of a sensing instrument or the fetch of transported quantities is of critical importance to guide the design and implementation of urban landscape planning strategies. In this study, we aim to unify two different methods for estimating source areas, viz. the statistical correlation method commonly used by geographers for landscape fragmentation and the mechanistic footprint model by meteorologists for atmospheric measurements. Good agreement was found in the intercomparison of the estimate of source areas by the two methods, based on 2-m air temperature measurement collected using a network of weather stations. The results can be extended to shed new lights on urban planning strategies, such as the use of urban vegetation for heat mitigation. In general, a sizable patch of landscape is required in order to play an effective role in regulating the local environment, proportional to the height at which stakeholders’ interest is mainly concerned.

ContributorsWang, Zhi-Hua (Author) / Fan, Chao (Author) / Myint, Soe (Author) / Wang, Chenghao (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-11-10
128424-Thumbnail Image.png
Description

Nocturnal cooling of urban areas governs the evolution of thermal state and many thermal-driven environmental issues in cities, especially those suffer strong urban heat island (UHI) effect. Advances in the fundamental understanding of the underlying physics of nighttime UHI involve disentangling complex contributing effects and remains an open challenge. In

Nocturnal cooling of urban areas governs the evolution of thermal state and many thermal-driven environmental issues in cities, especially those suffer strong urban heat island (UHI) effect. Advances in the fundamental understanding of the underlying physics of nighttime UHI involve disentangling complex contributing effects and remains an open challenge. In this study, we develop new numerical algorithms to characterize the thermodynamics of urban nocturnal cooling based on solving the energy balance equations for both the landscape surface and the overlying atmosphere. Further, a scaling law is proposed to relate the UHI intensity to a range of governing mechanisms, including the vertical and horizontal transport of heat in the surface layer, the urban-rural breeze, and the possible urban expansion. The accuracy of proposed methods is evaluated against in-situ urban measurements collected in cities with different geographic and climatic conditions. It is found that the vertical and horizontal contributors modulate the nocturnal UHI at distinct elevation in the atmospheric boundary layer.

ContributorsWang, Zhi-Hua (Author) / Li, Qi (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-04
128113-Thumbnail Image.png
Description

Objective: To assess the informational, educational and instrumental environments among Mexican healthcare settings for their potential to promote physical activity (PA).

Materials and Methods: The Environmental Physical Activity Assessment Tool for Healthcare Settings (EPATHS) was developed to assess the PA environments of 40 clinics/hospitals representing the three Mexican healthcare systems in

Objective: To assess the informational, educational and instrumental environments among Mexican healthcare settings for their potential to promote physical activity (PA).

Materials and Methods: The Environmental Physical Activity Assessment Tool for Healthcare Settings (EPATHS) was developed to assess the PA environments of 40 clinics/hospitals representing the three Mexican healthcare systems in Guadalajara. The EPATHS assessed the presence and quality of PA enhancing features in the informational (e.g. signage),educational (e.g. pamphlets), and instrumental (e.g. stairs)environments of included clinics/hospitals.

Results: 28 (70%) clinics/hospitals had more than one floor with stairs; 60% of these had elevators. Nearly 90% of stairs were visible, accessible and clean compared to fewer than 30% of elevators. Outdoor spaces were observed in just over half (55%) of clinics/hospitals, and most (70%) were of good quality. Only 25% clinics/hospitals had educational PA materials.

Conclusions: The PA instrumental environment of Mexican healthcare settings is encouraging. The informational and educational environments could improve.

Created2015-09
128276-Thumbnail Image.png
Description

Urban land–atmosphere interactions can be captured by numerical modeling framework with coupled land surface and atmospheric processes, while the model performance depends largely on accurate input parameters. In this study, we use an advanced stochastic approach to quantify parameter uncertainty and model sensitivity of a coupled numerical framework for urban

Urban land–atmosphere interactions can be captured by numerical modeling framework with coupled land surface and atmospheric processes, while the model performance depends largely on accurate input parameters. In this study, we use an advanced stochastic approach to quantify parameter uncertainty and model sensitivity of a coupled numerical framework for urban land–atmosphere interactions. It is found that the development of urban boundary layer is highly sensitive to surface characteristics of built terrains. Changes of both urban land use and geometry impose significant impact on the overlying urban boundary layer dynamics through modification on bottom boundary conditions, i.e., by altering surface energy partitioning and surface aerodynamic resistance, respectively. Hydrothermal properties of conventional and green roofs have different impacts on atmospheric dynamics due to different surface energy partitioning mechanisms. Urban geometry (represented by the canyon aspect ratio), however, has a significant nonlinear impact on boundary layer structure and temperature. Besides, managing rooftop roughness provides an alternative option to change the boundary layer thermal state through modification of the vertical turbulent transport. The sensitivity analysis deepens our insight into the fundamental physics of urban land–atmosphere interactions and provides useful guidance for urban planning under challenges of changing climate and continuous global urbanization.

ContributorsSong, Jiyun (Author) / Wang, Zhi-Hua (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-05-24
128114-Thumbnail Image.png
Description

The net storage heat flux (ΔQ[subscript S]) is important in the urban surface energy balance (SEB) but its determination remains a significant challenge. The hysteresis pattern of the diurnal relation between the ΔQ[subscript S] and net all-wave radiation (Q[superscript ∗]) has been captured in the Objective Hysteresis Model (OHM) parameterization

The net storage heat flux (ΔQ[subscript S]) is important in the urban surface energy balance (SEB) but its determination remains a significant challenge. The hysteresis pattern of the diurnal relation between the ΔQ[subscript S] and net all-wave radiation (Q[superscript ∗]) has been captured in the Objective Hysteresis Model (OHM) parameterization of ΔQ[subscript S]. Although successfully used in urban areas, the limited availability of coefficients for OHM hampers its application. To facilitate use, and enhance physical interpretations of the OHM coefficients, an analytical solution of the one-dimensional advection–diffusion equation of coupled heat and liquid water transport in conjunction with the SEB is conducted, allowing development of AnOHM (Analytical Objective Hysteresis Model). A sensitivity test of AnOHM to surface properties and hydrometeorological forcing is presented using a stochastic approach (subset simulation). The sensitivity test suggests that the albedo, Bowen ratio and bulk transfer coefficient, solar radiation and wind speed are most critical. AnOHM, driven by local meteorological conditions at five sites with different land use, is shown to simulate the ΔQ[subscript S] flux well (RMSE values of ∼ 30 W m[superscript −2]). The intra-annual dynamics of OHM coefficients are explored. AnOHM offers significant potential to enhance modelling of the surface energy balance over a wider range of conditions and land covers.

ContributorsSun, Ting (Author) / Wang, Zhi-Hua (Author) / Oechel, Walter C. (Author) / Grimmond, Sue (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-07-27