This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 62
Filtering by

Clear all filters

141505-Thumbnail Image.png
Description

High proportions of autistic children suffer from gastrointestinal (GI) disorders, implying a link between autism and abnormalities in gut microbial functions. Increasing evidence from recent high-throughput sequencing analyses indicates that disturbances in composition and diversity of gut microbiome are associated with various disease conditions. However, microbiome-level studies on autism are

High proportions of autistic children suffer from gastrointestinal (GI) disorders, implying a link between autism and abnormalities in gut microbial functions. Increasing evidence from recent high-throughput sequencing analyses indicates that disturbances in composition and diversity of gut microbiome are associated with various disease conditions. However, microbiome-level studies on autism are limited and mostly focused on pathogenic bacteria. Therefore, here we aimed to define systemic changes in gut microbiome associated with autism and autism-related GI problems. We recruited 20 neurotypical and 20 autistic children accompanied by a survey of both autistic severity and GI symptoms. By pyrosequencing the V2/V3 regions in bacterial 16S rDNA from fecal DNA samples, we compared gut microbiomes of GI symptom-free neurotypical children with those of autistic children mostly presenting GI symptoms. Unexpectedly, the presence of autistic symptoms, rather than the severity of GI symptoms, was associated with less diverse gut microbiomes. Further, rigorous statistical tests with multiple testing corrections showed significantly lower abundances of the genera Prevotella, Coprococcus, and unclassified Veillonellaceae in autistic samples. These are intriguingly versatile carbohydrate-degrading and/or fermenting bacteria, suggesting a potential influence of unusual diet patterns observed in autistic children. However, multivariate analyses showed that autism-related changes in both overall diversity and individual genus abundances were correlated with the presence of autistic symptoms but not with their diet patterns. Taken together, autism and accompanying GI symptoms were characterized by distinct and less diverse gut microbial compositions with lower levels of Prevotella, Coprococcus, and unclassified Veillonellaceae.

ContributorsKang, Dae Wook (Author) / Park, Jin (Author) / Ilhan, Zehra (Author) / Wallstrom, Garrick (Author) / LaBaer, Joshua (Author) / Adams, James (Author) / Krajmalnik-Brown, Rosa (Author) / Biodesign Institute (Contributor)
Created2013-06-03
Description

We present a microarray nonlinear calibration (MiNC) method for quantifying antibody binding to the surface of protein microarrays that significantly increases the linear dynamic range and reduces assay variation compared with traditional approaches. A serological analysis of guinea pig Mycobacterium tuberculosis models showed that a larger number of putative antigen

We present a microarray nonlinear calibration (MiNC) method for quantifying antibody binding to the surface of protein microarrays that significantly increases the linear dynamic range and reduces assay variation compared with traditional approaches. A serological analysis of guinea pig Mycobacterium tuberculosis models showed that a larger number of putative antigen targets were identified with MiNC, which is consistent with the improved assay performance of protein microarrays. MiNC has the potential to be employed in biomedical research using multiplex antibody assays that need quantitation, including the discovery of antibody biomarkers, clinical diagnostics with multi-antibody signatures, and construction of immune mathematical models.

ContributorsYu, Xiaobo (Author) / Wallstrom, Garrick (Author) / Magee, Mitch (Author) / Qiu, Ji (Author) / Mendoza, D. Eliseo A. (Author) / Wang, Jie (Author) / Bian, Xiaofang (Author) / Graves, Morgan (Author) / LaBaer, Joshua (Author) / Biodesign Institute (Contributor)
Created2013-08-12
Description

Stone-tipped weapons were a significant innovation for Middle Pleistocene hominins. Hafted hunting technology represents the development of new cognitive and social learning mechanisms within the genus Homo, and may have provided a foraging advantage over simpler forms of hunting technology, such as a sharpened wooden spear. However, the nature of

Stone-tipped weapons were a significant innovation for Middle Pleistocene hominins. Hafted hunting technology represents the development of new cognitive and social learning mechanisms within the genus Homo, and may have provided a foraging advantage over simpler forms of hunting technology, such as a sharpened wooden spear. However, the nature of this foraging advantage has not been confirmed. Experimental studies and ethnographic reports provide conflicting results regarding the relative importance of the functional, economic, and social roles of hafted hunting technology. The controlled experiment reported here was designed to test the functional hypothesis for stone-tipped weapons using spears and ballistics gelatin. It differs from previous investigations of this type because it includes a quantitative analysis of wound track profiles and focuses specifically on hand-delivered spear technology. Our results do not support the hypothesis that tipped spears penetrate deeper than untipped spears. However, tipped spears create a significantly larger inner wound cavity that widens distally. This inner wound cavity is analogous to the permanent wound cavity in ballistics research, which is considered the key variable affecting the relative ‘stopping power’ or ‘killing power’ of a penetrating weapon. Tipped spears conferred a functional advantage to Middle Pleistocene hominins, potentially affecting the frequency and regularity of hunting success with important implications for human adaptation and life history.

ContributorsWilkins, Jayne (Author) / Schoville, Benjamin (Author) / Brown, Kyle S. (Author) / School of Human Evolution and Social Change (Contributor)
Created2014-08-27
Description

Throughout the long history of virus-host co-evolution, viruses have developed delicate strategies to facilitate their invasion and replication of their genome, while silencing the host immune responses through various mechanisms. The systematic characterization of viral protein-host interactions would yield invaluable information in the understanding of viral invasion/evasion, diagnosis and therapeutic

Throughout the long history of virus-host co-evolution, viruses have developed delicate strategies to facilitate their invasion and replication of their genome, while silencing the host immune responses through various mechanisms. The systematic characterization of viral protein-host interactions would yield invaluable information in the understanding of viral invasion/evasion, diagnosis and therapeutic treatment of a viral infection, and mechanisms of host biology. With more than 2,000 viral genomes sequenced, only a small percent of them are well investigated. The access of these viral open reading frames (ORFs) in a flexible cloning format would greatly facilitate both in vitro and in vivo virus-host interaction studies. However, the overall progress of viral ORF cloning has been slow. To facilitate viral studies, we are releasing the initiation of our panviral proteome collection of 2,035 ORF clones from 830 viral genes in the Gateway® recombinational cloning system. Here, we demonstrate several uses of our viral collection including highly efficient production of viral proteins using human cell-free expression system in vitro, global identification of host targets for rubella virus using Nucleic Acid Programmable Protein Arrays (NAPPA) containing 10,000 unique human proteins, and detection of host serological responses using micro-fluidic multiplexed immunoassays. The studies presented here begin to elucidate host-viral protein interactions with our systemic utilization of viral ORFs, high-throughput cloning, and proteomic technologies. These valuable plasmid resources will be available to the research community to enable continued viral functional studies.

ContributorsYu, Xiaobo (Author) / Bian, Xiaofang (Author) / Throop, Andrea (Author) / Song, Lusheng (Author) / del Moral, Lerys (Author) / Park, Jin (Author) / Seiler, Catherine (Author) / Fiacco, Michael (Author) / Steel, Jason (Author) / Hunter, Preston (Author) / Saul, Justin (Author) / Wang, Jie (Author) / Qiu, Ji (Author) / Pipas, James M. (Author) / LaBaer, Joshua (Author) / Biodesign Institute (Contributor)
Created2013-11-30
Description

Rho GTPases are frequent targets of virulence factors as they are keystone signaling molecules. Herein, we demonstrate that AMPylation of Rho GTPases by VopS is a multifaceted virulence mechanism that counters several host immunity strategies. Activation of NFκB, Erk, and JNK kinase signaling pathways were inhibited in a VopS-dependent manner

Rho GTPases are frequent targets of virulence factors as they are keystone signaling molecules. Herein, we demonstrate that AMPylation of Rho GTPases by VopS is a multifaceted virulence mechanism that counters several host immunity strategies. Activation of NFκB, Erk, and JNK kinase signaling pathways were inhibited in a VopS-dependent manner during infection with Vibrio parahaemolyticus. Phosphorylation and degradation of IKBα were inhibited in the presence of VopS as was nuclear translocation of the NFκB subunit p65. AMPylation also prevented the generation of superoxide by the phagocytic NADPH oxidase complex, potentially by inhibiting the interaction of Rac and p67. Furthermore, the interaction of GTPases with the E3 ubiquitin ligases cIAP1 and XIAP was hindered, leading to decreased degradation of Rac and RhoA during infection. Finally, we screened for novel Rac1 interactions using a nucleic acid programmable protein array and discovered that Rac1 binds to the protein C1QA, a protein known to promote immune signaling in the cytosol. Interestingly, this interaction was disrupted by AMPylation. We conclude that AMPylation of Rho Family GTPases by VopS results in diverse inhibitory consequences during infection beyond the most obvious phenotype, the collapse of the actin cytoskeleton.

ContributorsWoolery, Andrew R. (Author) / Yu, Xiaobo (Author) / LaBaer, Joshua (Author) / Orth, Kim (Author) / Biodesign Institute (Contributor)
Created2014-11-21
Description

Background:
Ketogenic diets are high fat and low carbohydrate or very low carbohydrate diets, which render high production of ketones upon consumption known as nutritional ketosis (NK). Ketosis is also produced during fasting periods, which is known as fasting ketosis (FK). Recently, the combinations of NK and FK, as well as

Background:
Ketogenic diets are high fat and low carbohydrate or very low carbohydrate diets, which render high production of ketones upon consumption known as nutritional ketosis (NK). Ketosis is also produced during fasting periods, which is known as fasting ketosis (FK). Recently, the combinations of NK and FK, as well as NK alone, have been used as resources for weight loss management and treatment of epilepsy.

Methods:
A crossover study design was applied to 11 healthy individuals, who maintained moderately sedentary lifestyle, and consumed three types of diet randomly assigned over a three-week period. All participants completed the diets in a randomized and counterbalanced fashion. Each weekly diet protocol included three phases: Phase 1 - A mixed diet with ratio of fat: (carbohydrate + protein) by mass of 0.18 or the equivalence of 29% energy from fat from Day 1 to Day 5. Phase 2- A mixed or a high-fat diet with ratio of fat: (carbohydrate + protein) by mass of approximately 0.18, 1.63, or 3.80 on Day 6 or the equivalence of 29%, 79%, or 90% energy from fat, respectively. Phase 3 - A fasting diet with no calorie intake on Day 7. Caloric intake from diets on Day 1 to Day 6 was equal to each individual’s energy expenditure. On Day 7, ketone buildup from FK was measured.

Results:
A statistically significant effect of Phase 2 (Day 6) diet was found on FK of Day 7, as indicated by repeated analysis of variance (ANOVA), F(2,20) = 6.73, p < 0.0058. Using a Fisher LDS pair-wise comparison, higher significant levels of acetone buildup were found for diets with 79% fat content and 90% fat content vs. 29% fat content (with p = 0.00159**, and 0.04435**, respectively), with no significant difference between diets with 79% fat content and 90% fat content. In addition, independent of the diet, a significantly higher ketone buildup capability of subjects with higher resting energy expenditure (R[superscript 2] = 0.92), and lower body mass index (R[superscript 2] = 0.71) was observed during FK.

ContributorsPrabhakar, Amlendu (Author) / Quach, Ashley (Author) / Zhang, Haojiong (Author) / Terrera, Mirna (Author) / Jackemeyer, David (Author) / Xian, Xiaojun (Author) / Tsow, Tsing (Author) / Tao, Nongjian (Author) / Forzani, Erica (Author) / Biodesign Institute (Contributor)
Created2015-04-22
128811-Thumbnail Image.png
Description

The Middle Stone Age (MSA) is associated with early evidence for symbolic material culture and complex technological innovations. However, one of the most visible aspects of MSA technologies are unretouched triangular stone points that appear in the archaeological record as early as 500,000 years ago in Africa and persist throughout

The Middle Stone Age (MSA) is associated with early evidence for symbolic material culture and complex technological innovations. However, one of the most visible aspects of MSA technologies are unretouched triangular stone points that appear in the archaeological record as early as 500,000 years ago in Africa and persist throughout the MSA. How these tools were being used and discarded across a changing Pleistocene landscape can provide insight into how MSA populations prioritized technological and foraging decisions. Creating inferential links between experimental and archaeological tool use helps to establish prehistoric tool function, but is complicated by the overlaying of post-depositional damage onto behaviorally worn tools. Taphonomic damage patterning can provide insight into site formation history, but may preclude behavioral interpretations of tool function. Here, multiple experimental processes that form edge damage on unretouched lithic points from taphonomic and behavioral processes are presented. These provide experimental distributions of wear on tool edges from known processes that are then quantitatively compared to the archaeological patterning of stone point edge damage from three MSA lithic assemblages—Kathu Pan 1, Pinnacle Point Cave 13B, and Die Kelders Cave 1. By using a model-fitting approach, the results presented here provide evidence for variable MSA behavioral strategies of stone point utilization on the landscape consistent with armature tips at KP1, and cutting tools at PP13B and DK1, as well as damage contributions from post-depositional sources across assemblages. This study provides a method with which landscape-scale questions of early modern human tool-use and site-use can be addressed.

ContributorsSchoville, Benjamin J. (Author) / Brown, Kyle S. (Author) / Harris, Jacob (Author) / Wilkins, Jayne (Author) / School of Human Evolution and Social Change (Contributor)
Created2016-10-13
128265-Thumbnail Image.png
Description

The termites evolved eusociality and complex societies before the ants, but have been studied much less. The recent publication of the first two termite genomes provides a unique comparative opportunity, particularly because the sequenced termites represent opposite ends of the social complexity spectrum. Zootermopsis nevadensis has simple colonies with totipotent

The termites evolved eusociality and complex societies before the ants, but have been studied much less. The recent publication of the first two termite genomes provides a unique comparative opportunity, particularly because the sequenced termites represent opposite ends of the social complexity spectrum. Zootermopsis nevadensis has simple colonies with totipotent workers that can develop into all castes (dispersing reproductives, nest-inheriting replacement reproductives, and soldiers). In contrast, the fungus-growing termite Macrotermes natalensis belongs to the higher termites and has very large and complex societies with morphologically distinct castes that are life-time sterile. Here we compare key characteristics of genomic architecture, focusing on genes involved in communication, immune defenses, mating biology and symbiosis that were likely important in termite social evolution. We discuss these in relation to what is known about these genes in the ants and outline hypothesis for further testing.

ContributorsKorb, Judith (Author) / Poulsen, Michael (Author) / Hu, Haofu (Author) / Li, Cai (Author) / Boomsma, Jacobus J. (Author) / Zhang, Guojie (Author) / Liebig, Juergen (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-03-04
128260-Thumbnail Image.png
Description

Lineage-committed cells of many tissues exhibit substantial plasticity in contexts such as wound healing and tumorigenesis, but the regulation of this process is not well understood. We identified the Hippo transducer WWTR1/TAZ in a screen of transcription factors that are able to prompt lineage switching of mammary epithelial cells. Forced

Lineage-committed cells of many tissues exhibit substantial plasticity in contexts such as wound healing and tumorigenesis, but the regulation of this process is not well understood. We identified the Hippo transducer WWTR1/TAZ in a screen of transcription factors that are able to prompt lineage switching of mammary epithelial cells. Forced expression of TAZ in luminal cells induces them to adopt basal characteristics, and depletion of TAZ in basal and/or myoepithelial cells leads to luminal differentiation. In human and mouse tissues, TAZ is active only in basal cells and is critical for basal cell maintenance during homeostasis. Accordingly, loss of TAZ affects mammary gland development, leading to an imbalance of luminal and basal populations as well as branching defects. Mechanistically, TAZ interacts with components of the SWI/SNF complex to modulate lineage-specific gene expression. Collectively, these findings uncover a new role for Hippo signaling in the determination of lineage identity through recruitment of chromatin-remodeling complexes.

ContributorsSkibinski, Adam (Author) / Breindel, Jerrica L. (Author) / Prat, Aleix (Author) / Galvan, Patricia (Author) / Smith, Elizabeth (Author) / Rolfs, Andreas (Author) / Gupta, Piyush B. (Author) / LaBaer, Joshua (Author) / Kuperwasser, Charlotte (Author) / Biodesign Institute (Contributor)
Created2014-03-27
128259-Thumbnail Image.png
Description

We formulate an in silico model of pathogen avoidance mechanism and investigate its impact on defensive behavioural measures (e.g., spontaneous social exclusions and distancing, crowd avoidance and voluntary vaccination adaptation). In particular, we use SIR(B)S (e.g., susceptible-infected-recovered with additional behavioural component) model to investigate the impact of homo-psychologicus aspects of

We formulate an in silico model of pathogen avoidance mechanism and investigate its impact on defensive behavioural measures (e.g., spontaneous social exclusions and distancing, crowd avoidance and voluntary vaccination adaptation). In particular, we use SIR(B)S (e.g., susceptible-infected-recovered with additional behavioural component) model to investigate the impact of homo-psychologicus aspects of epidemics. We focus on reactionary behavioural changes, which apply to both social distancing and voluntary vaccination participations. Our analyses reveal complex relationships between spontaneous and uncoordinated behavioural changes, the emergence of its contagion properties, and mitigation of infectious diseases. We find that the presence of effective behavioural changes can impede the persistence of disease. Furthermore, it was found that under perfect effective behavioural change, there are three regions in the response factor (e.g., imitation and/or reactionary) and behavioural scale factor (e.g., global/local) factors ρ–α behavioural space. Mainly, (1) disease is always endemic even in the presence of behavioural change, (2) behavioural-prevalence plasticity is observed and disease can sometimes be eradication, and (3) elimination of endemic disease under permanence of permanent behavioural change is achieved. These results suggest that preventive behavioural changes (e.g., non-pharmaceutical prophylactic measures, social distancing and exclusion, crowd avoidance) are influenced by individual differences in perception of risks and are a salient feature of epidemics. Additionally, these findings indicates that care needs to be taken when considering the effect of adaptive behavioural change in predicting the course of epidemics, and as well as the interpretation and development of the public health measures that account for spontaneous behavioural changes.

Created2015-10-14