This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 31
Filtering by

Clear all filters

141465-Thumbnail Image.png
Description

Recent studies suggest a role for the microbiota in autism spectrum disorders (ASD), potentially arising from their role in modulating the immune system and gastrointestinal (GI) function or from gut–brain interactions dependent or independent from the immune system. GI problems such as chronic constipation and/or diarrhea are common in children

Recent studies suggest a role for the microbiota in autism spectrum disorders (ASD), potentially arising from their role in modulating the immune system and gastrointestinal (GI) function or from gut–brain interactions dependent or independent from the immune system. GI problems such as chronic constipation and/or diarrhea are common in children with ASD, and significantly worsen their behavior and their quality of life. Here we first summarize previously published data supporting that GI dysfunction is common in individuals with ASD and the role of the microbiota in ASD. Second, by comparing with other publically available microbiome datasets, we provide some evidence that the shifted microbiota can be a result of westernization and that this shift could also be framing an altered immune system. Third, we explore the possibility that gut–brain interactions could also be a direct result of microbially produced metabolites.

ContributorsKrajmalnik-Brown, Rosa (Author) / Lozupone, Catherine (Author) / Kang, Dae Wook (Author) / Adams, James (Author) / Biodesign Institute (Contributor)
Created2015-03-12
141466-Thumbnail Image.png
Description

There is a growing body of scientific evidence that the health of the microbiome (the trillions of microbes that inhabit the human host) plays an important role in maintaining the health of the host and that disruptions in the microbiome may play a role in certain disease processes. An increasing

There is a growing body of scientific evidence that the health of the microbiome (the trillions of microbes that inhabit the human host) plays an important role in maintaining the health of the host and that disruptions in the microbiome may play a role in certain disease processes. An increasing number of research studies have provided evidence that the composition of the gut (enteric) microbiome (GM) in at least a subset of individuals with autism spectrum disorder (ASD) deviates from what is usually observed in typically developing individuals. There are several lines of research that suggest that specific changes in the GM could be causative or highly associated with driving core and associated ASD symptoms, pathology, and comorbidities which include gastrointestinal symptoms, although it is also a possibility that these changes, in whole or in part, could be a consequence of underlying pathophysiological features associated with ASD. However, if the GM truly plays a causative role in ASD, then the manipulation of the GM could potentially be leveraged as a therapeutic approach to improve ASD symptoms and/or comorbidities, including gastrointestinal symptoms.

One approach to investigating this possibility in greater detail includes a highly controlled clinical trial in which the GM is systematically manipulated to determine its significance in individuals with ASD. To outline the important issues that would be required to design such a study, a group of clinicians, research scientists, and parents of children with ASD participated in an interdisciplinary daylong workshop as an extension of the 1st International Symposium on the Microbiome in Health and Disease with a Special Focus on Autism (www.microbiome-autism.com). The group considered several aspects of designing clinical studies, including clinical trial design, treatments that could potentially be used in a clinical trial, appropriate ASD participants for the clinical trial, behavioral and cognitive assessments, important biomarkers, safety concerns, and ethical considerations. Overall, the group not only felt that this was a promising area of research for the ASD population and a promising avenue for potential treatment but also felt that further basic and translational research was needed to clarify the clinical utility of such treatments and to elucidate possible mechanisms responsible for a clinical response, so that new treatments and approaches may be discovered and/or fostered in the future.

ContributorsFrye, Richard E. (Author) / Slattery, John (Author) / MacFabe, Derrick F. (Author) / Allen-Vercoe, Emma (Author) / Parker, William (Author) / Rodakis, John (Author) / Adams, James (Author) / Krajmalnik-Brown, Rosa (Author) / Bolte, Ellen (Author) / Kahler, Stephen (Author) / Jennings, Jana (Author) / James, Jill (Author) / Cerniglia, Carl E. (Author) / Midtvedt, Tore (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-05-07
141489-Thumbnail Image.png
Description

Background: Autism spectrum disorders (ASD) are complex neurobiological disorders that impair social interactions and communication and lead to restricted, repetitive, and stereotyped patterns of behavior, interests, and activities. The causes of these disorders remain poorly understood, but gut microbiota, the 1013 bacteria in the human intestines, have been implicated because children

Background: Autism spectrum disorders (ASD) are complex neurobiological disorders that impair social interactions and communication and lead to restricted, repetitive, and stereotyped patterns of behavior, interests, and activities. The causes of these disorders remain poorly understood, but gut microbiota, the 1013 bacteria in the human intestines, have been implicated because children with ASD often suffer gastrointestinal (GI) problems that correlate with ASD severity. Several previous studies have reported abnormal gut bacteria in children with ASD. The gut microbiome-ASD connection has been tested in a mouse model of ASD, where the microbiome was mechanistically linked to abnormal metabolites and behavior. Similarly, a study of children with ASD found that oral non-absorbable antibiotic treatment improved GI and ASD symptoms, albeit temporarily. Here, a small open-label clinical trial evaluated the impact of Microbiota Transfer Therapy (MTT) on gut microbiota composition and GI and ASD symptoms of 18 ASD-diagnosed children.

Results: MTT involved a 2-week antibiotic treatment, a bowel cleanse, and then an extended fecal microbiota transplant (FMT) using a high initial dose followed by daily and lower maintenance doses for 7–8 weeks. The Gastrointestinal Symptom Rating Scale revealed an approximately 80% reduction of GI symptoms at the end of treatment, including significant improvements in symptoms of constipation, diarrhea, indigestion, and abdominal pain. Improvements persisted 8 weeks after treatment. Similarly, clinical assessments showed that behavioral ASD symptoms improved significantly and remained improved 8 weeks after treatment ended. Bacterial and phage deep sequencing analyses revealed successful partial engraftment of donor microbiota and beneficial changes in the gut environment. Specifically, overall bacterial diversity and the abundance of Bifidobacterium, Prevotella, and Desulfovibrio among other taxa increased following MTT, and these changes persisted after treatment stopped (followed for 8 weeks).

Conclusions: This exploratory, extended-duration treatment protocol thus appears to be a promising approach to alter the gut microbiome and virome and improve GI and behavioral symptoms of ASD. Improvements in GI symptoms, ASD symptoms, and the microbiome all persisted for at least 8 weeks after treatment ended, suggesting a long-term impact.

ContributorsKang, Dae Wook (Author) / Adams, James (Author) / Gregory, Ann C. (Author) / Borody, Thomas (Author) / Chittick, Lauren (Author) / Fasano, Alessio (Author) / Khoruts, Alexander (Author) / Geis, Elizabeth (Author) / Maldonado Ortiz, Juan (Author) / McDonough-Means, Sharon (Author) / Pollard, Elena (Author) / Roux, Simon (Author) / Sadowsky, Michael J. (Author) / Schwarzberg Lipson, Karen (Author) / Sullivan, Matthew B. (Author) / Caporaso, J. Gregory (Author) / Krajmalnik-Brown, Rosa (Author) / Biodesign Institute (Contributor)
Created2017-01-23
141505-Thumbnail Image.png
Description

High proportions of autistic children suffer from gastrointestinal (GI) disorders, implying a link between autism and abnormalities in gut microbial functions. Increasing evidence from recent high-throughput sequencing analyses indicates that disturbances in composition and diversity of gut microbiome are associated with various disease conditions. However, microbiome-level studies on autism are

High proportions of autistic children suffer from gastrointestinal (GI) disorders, implying a link between autism and abnormalities in gut microbial functions. Increasing evidence from recent high-throughput sequencing analyses indicates that disturbances in composition and diversity of gut microbiome are associated with various disease conditions. However, microbiome-level studies on autism are limited and mostly focused on pathogenic bacteria. Therefore, here we aimed to define systemic changes in gut microbiome associated with autism and autism-related GI problems. We recruited 20 neurotypical and 20 autistic children accompanied by a survey of both autistic severity and GI symptoms. By pyrosequencing the V2/V3 regions in bacterial 16S rDNA from fecal DNA samples, we compared gut microbiomes of GI symptom-free neurotypical children with those of autistic children mostly presenting GI symptoms. Unexpectedly, the presence of autistic symptoms, rather than the severity of GI symptoms, was associated with less diverse gut microbiomes. Further, rigorous statistical tests with multiple testing corrections showed significantly lower abundances of the genera Prevotella, Coprococcus, and unclassified Veillonellaceae in autistic samples. These are intriguingly versatile carbohydrate-degrading and/or fermenting bacteria, suggesting a potential influence of unusual diet patterns observed in autistic children. However, multivariate analyses showed that autism-related changes in both overall diversity and individual genus abundances were correlated with the presence of autistic symptoms but not with their diet patterns. Taken together, autism and accompanying GI symptoms were characterized by distinct and less diverse gut microbial compositions with lower levels of Prevotella, Coprococcus, and unclassified Veillonellaceae.

ContributorsKang, Dae Wook (Author) / Park, Jin (Author) / Ilhan, Zehra (Author) / Wallstrom, Garrick (Author) / LaBaer, Joshua (Author) / Adams, James (Author) / Krajmalnik-Brown, Rosa (Author) / Biodesign Institute (Contributor)
Created2013-06-03
Description

Two classes of scaling behaviours, namely the super-linear scaling of links or activities, and the sub-linear scaling of area, diversity, or time elapsed with respect to size have been found to prevail in the growth of complex networked systems. Despite some pioneering modelling approaches proposed for specific systems, whether there

Two classes of scaling behaviours, namely the super-linear scaling of links or activities, and the sub-linear scaling of area, diversity, or time elapsed with respect to size have been found to prevail in the growth of complex networked systems. Despite some pioneering modelling approaches proposed for specific systems, whether there exists some general mechanisms that account for the origins of such scaling behaviours in different contexts, especially in socioeconomic systems, remains an open question. We address this problem by introducing a geometric network model without free parameter, finding that both super-linear and sub-linear scaling behaviours can be simultaneously reproduced and that the scaling exponents are exclusively determined by the dimension of the Euclidean space in which the network is embedded. We implement some realistic extensions to the basic model to offer more accurate predictions for cities of various scaling behaviours and the Zipf distribution reported in the literature and observed in our empirical studies. All of the empirical results can be precisely recovered by our model with analytical predictions of all major properties. By virtue of these general findings concerning scaling behaviour, our models with simple mechanisms gain new insights into the evolution and development of complex networked systems.

ContributorsZhang, Jiang (Author) / Li, Xintong (Author) / Wang, Xinran (Author) / Wang, Wen-Xu (Author) / Wu, Lingfei (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-04-29
Description

Widespread contamination of groundwater by chlorinated ethenes and their biological dechlorination products necessitates the reliable monitoring of liquid matrices; current methods approved by the U.S. Environmental Protection Agency (EPA) require a minimum of 5 mL of sample volume and cannot simultaneously detect all transformative products. This paper reports on the

Widespread contamination of groundwater by chlorinated ethenes and their biological dechlorination products necessitates the reliable monitoring of liquid matrices; current methods approved by the U.S. Environmental Protection Agency (EPA) require a minimum of 5 mL of sample volume and cannot simultaneously detect all transformative products. This paper reports on the simultaneous detection of six chlorinated ethenes and ethene itself, using a liquid sample volume of 1 mL by concentrating the compounds onto an 85-µm carboxen-polydimenthylsiloxane solid-phase microextraction fiber in 5 min and subsequent chromatographic analysis in 9.15 min. Linear increases in signal response were obtained over three orders of magnitude (∼0.05 to ∼50 µM) for simultaneous analysis with coefficient of determination (R2) values of ≥ 0.99. The detection limits of the method (1.3–6 µg/L) were at or below the maximum contaminant levels specified by the EPA. Matrix spike studies with groundwater and mineral medium showed recovery rates between 79–108%. The utility of the method was demonstrated in lab-scale sediment flow-through columns assessing the bioremediation potential of chlorinated ethene-contaminated groundwater. Owing to its low sample volume requirements, good sensitivity and broad target analyte range, the method is suitable for routine compliance monitoring and is particularly attractive for interpreting the bench-scale feasibility studies that are commonly performed during the remedial design stage of groundwater cleanup projects.

ContributorsZiv-El, Michal (Author) / Kalinowski, Tomasz (Author) / Krajmalnik-Brown, Rosa (Author) / Halden, Rolf (Author) / Biodesign Institute (Contributor)
Created2014-02-01
128777-Thumbnail Image.png
Description

Dehalococcoides mccartyi strains are of particular importance for bioremediation due to their unique capability of transforming perchloroethene (PCE) and trichloroethene (TCE) to non-toxic ethene, through the intermediates cis-dichloroethene (cis-DCE) and vinyl chloride (VC). Despite the widespread environmental distribution of Dehalococcoides, biostimulation sometimes fails to promote dechlorination beyond cis-DCE. In our

Dehalococcoides mccartyi strains are of particular importance for bioremediation due to their unique capability of transforming perchloroethene (PCE) and trichloroethene (TCE) to non-toxic ethene, through the intermediates cis-dichloroethene (cis-DCE) and vinyl chloride (VC). Despite the widespread environmental distribution of Dehalococcoides, biostimulation sometimes fails to promote dechlorination beyond cis-DCE. In our study, microcosms established with garden soil and mangrove sediment also stalled at cis-DCE, albeit Dehalococcoides mccartyi containing the reductive dehalogenase genes tceA, vcrA and bvcA were detected in the soil/sediment inocula. Reductive dechlorination was not promoted beyond cis-DCE, even after multiple biostimulation events with fermentable substrates and a lengthy incubation.

However, transfers from microcosms stalled at cis-DCE yielded dechlorination to ethene with subsequent enrichment cultures containing up to 109 Dehalococcoides mccartyi cells mL-1. Proteobacterial classes which dominated the soil/sediment communities became undetectable in the enrichments, and methanogenic activity drastically decreased after the transfers. We hypothesized that biostimulation of Dehalococcoides in the cis-DCE-stalled microcosms was impeded by other microbes present at higher abundances than Dehalococcoides and utilizing terminal electron acceptors from the soil/sediment, hence, outcompeting Dehalococcoides for H2. In support of this hypothesis, we show that garden soil and mangrove sediment microcosms bioaugmented with their respective cultures containing Dehalococcoides in high abundance were able to compete for H2 for reductive dechlorination from one biostimulation event and produced ethene with no obvious stall. Overall, our results provide an alternate explanation to consolidate conflicting observations on the ubiquity of Dehalococcoides mccartyi and occasional stalling of dechlorination at cis-DCE; thus, bringing a new perspective to better assess biological potential of different environments and to understand microbial interactions governing bioremediation.

ContributorsDelgado, Anca (Author) / Kang, Dae-Wook (Author) / Nelson, Katherine (Author) / Fajardo-Williams, Devyn (Author) / Miceli, Joseph (Author) / Done, Hansa (Author) / Popat, Sudeep (Author) / Krajmalnik-Brown, Rosa (Author) / Biodesign Institute (Contributor)
Created2014-06-20
129257-Thumbnail Image.png
Description

Land surface energy balance in a built environment is widely modelled using urban canopy models with representation of building arrays as big street canyons. Modification of this simplified geometric representation, however, leads to challenging numerical difficulties in improving physical parameterization schemes that are deterministic in nature. In this paper, we

Land surface energy balance in a built environment is widely modelled using urban canopy models with representation of building arrays as big street canyons. Modification of this simplified geometric representation, however, leads to challenging numerical difficulties in improving physical parameterization schemes that are deterministic in nature. In this paper, we develop a stochastic algorithm to estimate view factors between canyon facets in the presence of shade trees based on Monte Carlo simulation, where an analytical formulation is inhibited by the complex geometry. The model is validated against analytical solutions of benchmark radiative problems as well as field measurements in real street canyons. In conjunction with the matrix method resolving infinite number of reflections, the proposed model is capable of predicting the radiative exchange inside the street canyon with good accuracy. Modeling of transient evolution of thermal filed inside the street canyon using the proposed method demonstrate the potential of shade trees in mitigating canyon surface temperatures as well as saving of building energy use. This new numerical framework also deepens our insight into the fundamental physics of radiative heat transfer and surface energy balance for urban climate modeling.

ContributorsWang, Zhi-Hua (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-12-01
129256-Thumbnail Image.png
Description

Studies on urban heat island (UHI) have been more than a century after the phenomenon was first discovered in the early 1800s. UHI emerges as the source of many urban environmental problems and exacerbates the living environment in cities. Under the challenges of increasing urbanization and future climate changes, there

Studies on urban heat island (UHI) have been more than a century after the phenomenon was first discovered in the early 1800s. UHI emerges as the source of many urban environmental problems and exacerbates the living environment in cities. Under the challenges of increasing urbanization and future climate changes, there is a pressing need for sustainable adaptation/mitigation strategies for UHI effects, one popular option being the use of reflective materials. While it is introduced as an effective method to reduce temperature and energy consumption in cities, its impacts on environmental sustainability and large-scale non-local effect are inadequately explored. This paper provides a synthetic overview of potential environmental impacts of reflective materials at a variety of scales, ranging from energy load on a single building to regional hydroclimate. The review shows that mitigation potential of reflective materials depends on a set of factors, including building characteristics, urban environment, meteorological and geographical conditions, to name a few. Precaution needs to be exercised by city planners and policy makers for large-scale deployment of reflective materials before their environmental impacts, especially on regional hydroclimates, are better understood. In general, it is recommended that optimal strategy for UHI needs to be determined on a city-by-city basis, rather than adopting a “one-solution-fits-all” strategy.

ContributorsYang, Jiachuan (Author) / Wang, Zhi-Hua (Author) / Kaloush, Kamil (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-07-01
129647-Thumbnail Image.png
Description

The hysteresis effect in diurnal cycles of net radiation R-n and ground heat flux G(0) has been observed in many studies, while the governing mechanism remains vague. In this study, we link the phenomenology of hysteresis loops to the wave phase difference between the diurnal evolutions of various terms in

The hysteresis effect in diurnal cycles of net radiation R-n and ground heat flux G(0) has been observed in many studies, while the governing mechanism remains vague. In this study, we link the phenomenology of hysteresis loops to the wave phase difference between the diurnal evolutions of various terms in the surface energy balance. R-n and G(0) are parameterized with the incoming solar radiation and the surface temperature as two control parameters of the surface energy partitioning. The theoretical analysis shows that the vertical water flux W and the scaled ratio A(s)*/A(T)* (net shortwave radiation to outgoing longwave radiation) play crucial roles in shaping hysteresis loops of R-n and G(0). Comparisons to field measurements indicate that hysteresis loops for different land covers can be well captured by the theoretical model, which is also consistent with Camuffo-Bernadi formula. This study provides insight into the surface partitioning and temporal evolution of the energy budget at the land surface.

ContributorsSun, Ting (Author) / Wang, Zhi-Hua (Author) / Ni, Guang-Heng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2013-09-18