This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 21 - 30 of 66
Filtering by

Clear all filters

128717-Thumbnail Image.png
Description

Complexities and uncertainties surrounding urbanization and climate change complicate water resource sustainability. Although research has examined various aspects of complex water systems, including uncertainties, relatively few attempts have been made to synthesize research findings in particular contexts. We fill this gap by examining the complexities, uncertainties, and decision processes for

Complexities and uncertainties surrounding urbanization and climate change complicate water resource sustainability. Although research has examined various aspects of complex water systems, including uncertainties, relatively few attempts have been made to synthesize research findings in particular contexts. We fill this gap by examining the complexities, uncertainties, and decision processes for water sustainability and urban adaptation to climate change in the case study region of Phoenix, Arizona. In doing so, we integrate over a decade of research conducted by Arizona State University’s Decision Center for a Desert City (DCDC). DCDC is a boundary organization that conducts research in collaboration with policy makers, with the goal of informing decision-making under uncertainty. Our results highlight: the counterintuitive, non-linear, and competing relationships in human–environment dynamics; the myriad uncertainties in climatic, scientific, political, and other domains of knowledge and practice; and, the social learning that has occurred across science and policy spheres. Finally, we reflect on how our interdisciplinary research and boundary organization has evolved over time to enhance adaptive and sustainable governance in the face of complex system dynamics.

ContributorsLarson, Kelli (Author) / White, Dave (Author) / Gober, Patricia (Author) / Wutich, Amber (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2015-11-04
128714-Thumbnail Image.png
Description

Problem- and project-based learning (PPBL) courses in sustainability address real-world sustainability problems. They are considered powerful educational settings for building students’ sustainability expertise. In practice, however, these courses often fail to fully incorporate sustainability competencies, participatory research education, and experiential learning. Only few studies exist that compare and appraise PPBL

Problem- and project-based learning (PPBL) courses in sustainability address real-world sustainability problems. They are considered powerful educational settings for building students’ sustainability expertise. In practice, however, these courses often fail to fully incorporate sustainability competencies, participatory research education, and experiential learning. Only few studies exist that compare and appraise PPBL courses internationally against a synthesized body of the literature to create an evidence base for designing PPBL courses. This article introduces a framework for PPBL courses in sustainability and reviews PPBL practice in six programs around the world (Europe, North America, Australia). Data was collected through semi-structured qualitative interviews with course instructors and program officers, as well as document analysis. Findings indicate that the reviewed PPBL courses are of high quality and carefully designed. Each PPBL course features innovative approaches to partnerships between the university and private organizations, extended peer-review, and the role of knowledge brokers. Yet, the findings also indicate weaknesses including paucity of critical learning objectives, solution-oriented research methodology, and follow-up research on implementation. Through the comparative design, the study reveals improvement strategies for the identified challenges and provides guidance for design and redesign of PPBL courses.

Created2013-04-23
128706-Thumbnail Image.png
Description

If sustainability is to be an integral part of rethinking education organization, it is necessary to redesign mental models that shape present curricular structures. Assumptions underlying the design of most schools and curricula are based on linear industrial models, which raises an essential question: How can we use opposite concepts

If sustainability is to be an integral part of rethinking education organization, it is necessary to redesign mental models that shape present curricular structures. Assumptions underlying the design of most schools and curricula are based on linear industrial models, which raises an essential question: How can we use opposite concepts of systems dynamics and living structures to create a shift in our present thinking about curriculum and learning for sustainability? From this, we can begin a dramatic design shift toward innovative curriculum to prepare future students and teachers. This article begins with a critique of modern industrial education, then moves into an overview of sustainability concepts and structure through systems thinking. The article then presents the research of an original sustainability curriculum that structures assessment to measure systems thinking. From the results, the article then explores a conceptual design framework for a 21st century curriculum that bio-mimics living systems and organic molecular structure, based on systems thinking and mechanistic principles. By placing assessment on competency relationships and not solely assignment completion, this new framework encourages students and educators to develop emerging 21st century skills in the age of digital technology and communication. This essay and framework, which emerged from the author’s dissertation research and findings, offers a new conceptual tool to the field of sustainability education while challenging educators to adopt living systems into their own instructional designs.

Created2017-03-26
128689-Thumbnail Image.png
Description

Educational interventions are a promising way to shift individual behaviors towards Sustainability. Yet, as this research confirms, the standard fare of education, declarative knowledge, does not work. This study statistically analyzes the impact of an intervention designed and implemented in Mexico using the Educating for Sustainability (EfS) framework which focuses

Educational interventions are a promising way to shift individual behaviors towards Sustainability. Yet, as this research confirms, the standard fare of education, declarative knowledge, does not work. This study statistically analyzes the impact of an intervention designed and implemented in Mexico using the Educating for Sustainability (EfS) framework which focuses on imparting procedural and subjective knowledge about waste through innovative pedagogy. Using data from three different rounds of surveys we were able to confirm (1) the importance of subjective and procedural knowledge for Sustainable behavior in a new context; (2) the effectiveness of the EfS framework and (3) the importance of changing subjective knowledge for changing behavior. While the impact was significant in the short term, one year later most if not all of those gains had evaporated. Interventions targeted at subjective knowledge will work, but more research is needed on how to make behavior change for Sustainability durable.

Created2016-12-24
128675-Thumbnail Image.png
Description

Human vulnerability to heat varies at a range of spatial scales, especially within cities where there can be noticeable intra-urban differences in heat risk factors. Mapping and visualizing intra-urban heat vulnerability offers opportunities for presenting information to support decision-making. For example the visualization of the spatial variation of heat vulnerability

Human vulnerability to heat varies at a range of spatial scales, especially within cities where there can be noticeable intra-urban differences in heat risk factors. Mapping and visualizing intra-urban heat vulnerability offers opportunities for presenting information to support decision-making. For example the visualization of the spatial variation of heat vulnerability has the potential to enable local governments to identify hot spots of vulnerability and allocate resources and increase assistance to people in areas of greatest need. Recently there has been a proliferation of heat vulnerability mapping studies, all of which, to varying degrees, justify the process of vulnerability mapping in a policy context. However, to date, there has not been a systematic review of the extent to which the results of vulnerability mapping studies have been applied in decision-making. Accordingly we undertook a comprehensive review of 37 recently published papers that use geospatial techniques for assessing human vulnerability to heat. In addition, we conducted an anonymous survey of the lead authors of the 37 papers in order to establish the level of interaction between the researchers as science information producers and local authorities as information users. Both paper review and author survey results show that heat vulnerability mapping has been used in an attempt to communicate policy recommendations, raise awareness and induce institutional networking and learning, but has not as yet had a substantive influence on policymaking or preventive action.

Created2015-10-23
129423-Thumbnail Image.png
Description

Recently, there has been an increased interest in using behavioral experiments to study hypotheses on the governance of social-ecological systems. A diversity of software tools are used to implement such experiments. We evaluated various publicly available platforms that could be used in research and education on the governance of social-ecological

Recently, there has been an increased interest in using behavioral experiments to study hypotheses on the governance of social-ecological systems. A diversity of software tools are used to implement such experiments. We evaluated various publicly available platforms that could be used in research and education on the governance of social-ecological systems. The aims of the various platforms are distinct, and this is noticeable in the differences in their user-friendliness and their adaptability to novel research questions. The more easily accessible platforms are useful for prototyping experiments and for educational purposes to illustrate theoretical concepts. To advance novel research aims, more elaborate programming experience is required to either implement an experiment from scratch or adjust existing experimental software. There is no ideal platform best suited for all possible use cases, but we have provided a menu of options and their associated trade-offs.

Created2013-11-30
129422-Thumbnail Image.png
Description

Faced with numerous seemingly intractable social and environmental challenges, many scholars and practitioners are increasingly interested in understanding how to actively engage and transform the existing systems holding such problems in place. Although a variety of analytical models have emerged in recent years, most emphasize either the social or ecological

Faced with numerous seemingly intractable social and environmental challenges, many scholars and practitioners are increasingly interested in understanding how to actively engage and transform the existing systems holding such problems in place. Although a variety of analytical models have emerged in recent years, most emphasize either the social or ecological elements of such transformations rather than their coupled nature. To address this, first we have presented a definition of the core elements of a social-ecological system (SES) that could potentially be altered in a transformation. Second, we drew on insights about transformation from three branches of literature focused on radical change, i.e., social movements, socio-technical transitions, and social innovation, and gave consideration to the similarities and differences with the current studies by resilience scholars. Drawing on these findings, we have proposed a framework that outlines the process and phases of transformative change in an SES. Future research will be able to utilize the framework as a tool for analyzing the alteration of social-ecological feedbacks, identifying critical barriers and leverage points and assessing the outcome of social-ecological transformations.

ContributorsMoore, Michele-Lee (Author) / Tjornbo, Ola (Author) / Enfors, Elin (Author) / Knapp, Corrie (Author) / Hodbod, Jennifer (Author) / Baggio, Jacopo (Author) / Norstrom, Albert (Author) / Olsson, Per (Author) / Biggs, Duan (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2013-11-30
128410-Thumbnail Image.png
Description

Background: Vulnerability mapping based on vulnerability indices is a pragmatic approach for highlighting the areas in a city where people are at the greatest risk of harm from heat, but the manner in which vulnerability is conceptualized influences the results.

Objectives: We tested a generic national heat-vulnerability index, based on a

Background: Vulnerability mapping based on vulnerability indices is a pragmatic approach for highlighting the areas in a city where people are at the greatest risk of harm from heat, but the manner in which vulnerability is conceptualized influences the results.

Objectives: We tested a generic national heat-vulnerability index, based on a 10-variable indicator framework, using data on heat-related hospitalizations in Phoenix, Arizona. We also identified potential local risk factors not included in the generic indicators.

Methods: To evaluate the accuracy of the generic index in a city-specific context, we used factor scores, derived from a factor analysis using census tract–level characteristics, as independent variables, and heat hospitalizations (with census tracts categorized as zero-, moderate-, or high-incidence) as dependent variables in a multinomial logistic regression model. We also compared the geographical differences between a vulnerability map derived from the generic index and one derived from actual heat-related hospitalizations at the census-tract scale.

Results: We found that the national-indicator framework correctly classified just over half (54%) of census tracts in Phoenix. Compared with all census tracts, high-vulnerability tracts that were misclassified by the index as zero-vulnerability tracts had higher average income and higher proportions of residents with a duration of residency < 5 years.

Conclusion: The generic indicators of vulnerability are useful, but they are sensitive to scale, measurement, and context. Decision makers need to consider the characteristics of their cities to determine how closely vulnerability maps based on generic indicators reflect actual risk of harm.

Created2015-01-30
128399-Thumbnail Image.png
Description

Environmental niche modeling (ENM) is commonly used to develop probabilistic maps of species distribution. Among available ENM techniques, MaxEnt has become one of the most popular tools for modeling species distribution, with hundreds of peer-reviewed articles published each year. MaxEnt’s popularity is mainly due to the use of a graphical

Environmental niche modeling (ENM) is commonly used to develop probabilistic maps of species distribution. Among available ENM techniques, MaxEnt has become one of the most popular tools for modeling species distribution, with hundreds of peer-reviewed articles published each year. MaxEnt’s popularity is mainly due to the use of a graphical interface and automatic parameter configuration capabilities. However, recent studies have shown that using the default automatic configuration may not be always appropriate because it can produce non-optimal models; particularly when dealing with a small number of species presence points. Thus, the recommendation is to evaluate the best potential combination of parameters (feature classes and regularization multiplier) to select the most appropriate model. In this work we reviewed 244 articles published between 2013 and 2015 to assess whether researchers are following recommendations to avoid using the default parameter configuration when dealing with small sample sizes, or if they are using MaxEnt as a “black box tool.” Our results show that in only 16% of analyzed articles authors evaluated best feature classes, in 6.9% evaluated best regularization multipliers, and in a meager 3.7% evaluated simultaneously both parameters before producing the definitive distribution model. We analyzed 20 articles to quantify the potential differences in resulting outputs when using software default parameters instead of the alternative best model. Results from our analysis reveal important differences between the use of default parameters and the best model approach, especially in the total area identified as suitable for the assessed species and the specific areas that are identified as suitable by both modelling approaches. These results are worrying, because publications are potentially reporting over-complex or over-simplistic models that can undermine the applicability of their results. Of particular importance are studies used to inform policy making. Therefore, researchers, practitioners, reviewers and editors need to be very judicious when dealing with MaxEnt, particularly when the modelling process is based on small sample sizes.

Created2017-03-14
128523-Thumbnail Image.png
Description

The planetary boundary framework constitutes an opportunity for decision makers to define climate policy through the lens of adaptive governance. Here, we use the DICE model to analyze the set of adaptive climate policies that comply with the two planetary boundaries related to climate change: (1) staying below a CO2…

The planetary boundary framework constitutes an opportunity for decision makers to define climate policy through the lens of adaptive governance. Here, we use the DICE model to analyze the set of adaptive climate policies that comply with the two planetary boundaries related to climate change: (1) staying below a CO2 concentration of 550 ppm until 2100 and (2) returning to 350 ppm in 2100. Our results enable decision makers to assess the following milestones: (1) a minimum of 33% reduction of CO2 emissions by 2055 in order to stay below 550 ppm by 2100 (this milestone goes up to 46% in the case of delayed policies); and (2) carbon neutrality and the effective implementation of innovative geoengineering technologies (10% negative emissions) before 2060 in order to return to 350 ppm in 2100, under the assumption of getting out of the baseline scenario without delay. Finally, we emphasize the need to use adaptive path-based approach instead of single point target for climate policy design.

Created2017-02-07