This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 37
Filtering by

Clear all filters

141468-Thumbnail Image.png
Description

In this synthesis, we hope to accomplish two things: 1) reflect on how the analysis of the new archaeological cases presented in this special feature adds to previous case studies by revisiting a set of propositions reported in a 2006 special feature, and 2) reflect on four main ideas that

In this synthesis, we hope to accomplish two things: 1) reflect on how the analysis of the new archaeological cases presented in this special feature adds to previous case studies by revisiting a set of propositions reported in a 2006 special feature, and 2) reflect on four main ideas that are more specific to the archaeological cases: i) societal choices are influenced by robustness–vulnerability trade-offs, ii) there is interplay between robustness–vulnerability trade-offs and robustness–performance trade-offs, iii) societies often get locked in to particular strategies, and iv) multiple positive feedbacks escalate the perceived cost of societal change. We then discuss whether these lock-in traps can be prevented or whether the risks associated with them can be mitigated. We conclude by highlighting how these long-term historical studies can help us to understand current society, societal practices, and the nexus between ecology and society.

ContributorsSchoon, Michael (Author) / Fabricius, Christo (Author) / Anderies, John (Author) / Nelson, Margaret (Author) / College of Liberal Arts and Sciences (Contributor)
Created2011
129567-Thumbnail Image.png
Description

Human protein diversity arises as a result of alternative splicing, single nucleotide polymorphisms (SNPs) and posttranslational modifications. Because of these processes, each protein can exists as multiple variants in vivo. Tailored strategies are needed to study these protein variants and understand their role in health and disease. In this work

Human protein diversity arises as a result of alternative splicing, single nucleotide polymorphisms (SNPs) and posttranslational modifications. Because of these processes, each protein can exists as multiple variants in vivo. Tailored strategies are needed to study these protein variants and understand their role in health and disease. In this work we utilized quantitative mass spectrometric immunoassays to determine the protein variants concentration of beta-2-microglobulin, cystatin C, retinol binding protein, and transthyretin, in a population of 500 healthy individuals. Additionally, we determined the longitudinal concentration changes for the protein variants from four individuals over a 6 month period. Along with the native forms of the four proteins, 13 posttranslationally modified variants and 7 SNP-derived variants were detected and their concentration determined. Correlations of the variants concentration with geographical origin, gender, and age of the individuals were also examined. This work represents an important step toward building a catalog of protein variants concentrations and examining their longitudinal changes.

ContributorsTrenchevska, Olgica (Author) / Phillips, David A. (Author) / Nelson, Randall (Author) / Nedelkov, Dobrin (Author) / Biodesign Institute (Contributor)
Created2014-06-23
129492-Thumbnail Image.png
Description

As part of an international collaboration to compare large-scale commons, we used the Social-Ecological Systems Meta-Analysis Database (SESMAD) to systematically map out attributes of and changes in the Great Barrier Reef Marine Park (GBRMP) in Australia. We focus on eight design principles from common-pool resource (CPR) theory and other key

As part of an international collaboration to compare large-scale commons, we used the Social-Ecological Systems Meta-Analysis Database (SESMAD) to systematically map out attributes of and changes in the Great Barrier Reef Marine Park (GBRMP) in Australia. We focus on eight design principles from common-pool resource (CPR) theory and other key social-ecological systems governance variables, and explore to what extent they help explain the social and ecological outcomes of park management through time. Our analysis showed that commercial fisheries management and the re-zoning of the GBRMP in 2004 led to improvements in ecological condition of the reef, particularly fisheries. These boundary and rights changes were supported by effective monitoring, sanctioning and conflict resolution. Moderate biophysical connectivity was also important for improved outcomes. However, our analysis also highlighted that continued challenges to improved ecological health in terms of coral cover and biodiversity can be explained by fuzzy boundaries between land and sea, and the significance of external drivers to even large-scale social-ecological systems (SES). While ecological and institutional fit in the marine SES was high, this was not the case when considering the coastal SES. Nested governance arrangements become even more important at this larger scale. To our knowledge, our paper provides the first analysis linking the re-zoning of the GBRMP to CPR and SES theory. We discuss important challenges to coding large-scale systems for meta-analysis.

Created2013-11-30
129493-Thumbnail Image.png
Description

The Montreal Protocol is generally credited as a successful example of international cooperation in response to a global environmental problem. As a result, the production and consumption of ozone-depleting substances has declined rapidly, and it is expected that atmospheric ozone concentrations will return to their normal ranges toward the end

The Montreal Protocol is generally credited as a successful example of international cooperation in response to a global environmental problem. As a result, the production and consumption of ozone-depleting substances has declined rapidly, and it is expected that atmospheric ozone concentrations will return to their normal ranges toward the end of this century. This paper applies the social-ecological system framework and common-pool resource theory to explore the congruence between successful resolution of small-scale appropriation problems and ozone regulation, a large-scale pollution problem. The results of our analysis correspond closely to past studies of the Protocol that highlight the importance of attributes such as a limited number of major industrial producers, advances in scientific knowledge, and the availability of technological substitutes. However, in contrast to previous theoretical accounts that focus on one or a few variables, our analysis suggests that its success may have been the result of interactions between a wider range of SES attributes, many of which are associated with successful small-scale environmental governance. Although carefully noting the limitations of drawing conclusions from the analysis of a single case, our analysis reveals the potential for fruitful interplay between common-pool resource theory and large-scale pollution problems.

ContributorsEpstein, Graham (Author) / Perez Ibarra, Irene (Author) / Schoon, Michael (Author) / Meek, Chanda L. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-11-30
129379-Thumbnail Image.png
Description

The purpose of the United Nations-guided process to establish Sustainable Development Goals is to galvanize governments and civil society to rise to the interlinked environmental, societal, and economic challenges we face in the Anthropocene. We argue that the process of setting Sustainable Development Goals should take three key aspects into

The purpose of the United Nations-guided process to establish Sustainable Development Goals is to galvanize governments and civil society to rise to the interlinked environmental, societal, and economic challenges we face in the Anthropocene. We argue that the process of setting Sustainable Development Goals should take three key aspects into consideration. First, it should embrace an integrated social-ecological system perspective and acknowledge the key dynamics that such systems entail, including the role of ecosystems in sustaining human wellbeing, multiple cross-scale interactions, and uncertain thresholds. Second, the process needs to address trade-offs between the ambition of goals and the feasibility in reaching them, recognizing biophysical, social, and political constraints. Third, the goal-setting exercise and the management of goal implementation need to be guided by existing knowledge about the principles, dynamics, and constraints of social change processes at all scales, from the individual to the global. Combining these three aspects will increase the chances of establishing and achieving effective Sustainable Development Goals.

ContributorsNorstrom, Albert V. (Author) / Dannenberg, Astrid (Author) / McCarney, Geoff (Author) / Milkoreit, Manjana (Author) / Diekert, Florian (Author) / Engstrom, Gustav (Author) / Fishman, Ram (Author) / Gars, Johan (Author) / Kyriakopoolou, Efthymia (Author) / Manoussi, Vassiliki (Author) / Meng, Kyle (Author) / Metian, Marc (Author) / Sanctuary, Mark (Author) / Schluter, Maja (Author) / Schoon, Michael (Author) / Schultz, Lisen (Author) / Sjostedt, Martin (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2013-11-30
128687-Thumbnail Image.png
Description

Proteins can exist as multiple proteoforms in vivo, as a result of alternative splicing and single-nucleotide polymorphisms (SNPs), as well as posttranslational processing. To address their clinical significance in a context of diagnostic information, proteoforms require a more in-depth analysis. Mass spectrometric immunoassays (MSIA) have been devised for studying structural

Proteins can exist as multiple proteoforms in vivo, as a result of alternative splicing and single-nucleotide polymorphisms (SNPs), as well as posttranslational processing. To address their clinical significance in a context of diagnostic information, proteoforms require a more in-depth analysis. Mass spectrometric immunoassays (MSIA) have been devised for studying structural diversity in human proteins. MSIA enables protein profiling in a simple and high-throughput manner, by combining the selectivity of targeted immunoassays, with the specificity of mass spectrometric detection. MSIA has been used for qualitative and quantitative analysis of single and multiple proteoforms, distinguishing between normal fluctuations and changes related to clinical conditions. This mini review offers an overview of the development and application of mass spectrometric immunoassays for clinical and population proteomics studies. Provided are examples of some recent developments, and also discussed are the trends and challenges in mass spectrometry-based immunoassays for the next-phase of clinical applications.

ContributorsTrenchevska, Olgica (Author) / Nelson, Randall (Author) / Nedelkov, Dobrin (Author) / Biodesign Institute (Contributor)
Created2016-03-17
128968-Thumbnail Image.png
Description

Background: Omnivorous diets are high in arachidonic acid (AA) compared to vegetarian diets. Research shows that high intakes of AA promote changes in brain that can disturb mood. Omnivores who eat fish regularly increase their intakes of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), fats that oppose the negative effects of

Background: Omnivorous diets are high in arachidonic acid (AA) compared to vegetarian diets. Research shows that high intakes of AA promote changes in brain that can disturb mood. Omnivores who eat fish regularly increase their intakes of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), fats that oppose the negative effects of AA in vivo. In a recent cross-sectional study, omnivores reported significantly worse mood than vegetarians despite higher intakes of EPA and DHA. This study investigated the impact of restricting meat, fish, and poultry on mood.

Findings: Thirty-nine omnivores were randomly assigned to a control group consuming meat, fish, and poultry daily (OMN); a group consuming fish 3-4 times weekly but avoiding meat and poultry (FISH), or a vegetarian group avoiding meat, fish, and poultry (VEG). At baseline and after two weeks, participants completed a food frequency questionnaire, the Profile of Mood States questionnaire and the Depression Anxiety and Stress Scales. After the diet intervention, VEG participants reduced their EPA, DHA, and AA intakes, while FISH participants increased their EPA and DHA intakes. Mood scores were unchanged for OMN or FISH participants, but several mood scores for VEG participants improved significantly after two weeks.

Conclusions: Restricting meat, fish, and poultry improved some domains of short-term mood state in modern omnivores. To our knowledge, this is the first trial to examine the impact of restricting meat, fish, and poultry on mood state in omnivores.

ContributorsBeezhold, Bonnie L. (Author) / Johnston, Carol (Author) / College of Health Solutions (Contributor)
Created2012-02-14
128933-Thumbnail Image.png
Description

Introduction: Apolipoprotein C-III (apoC-III) regulates triglyceride (TG) metabolism. In plasma, apoC-III exists in non-sialylated (apoC-III0a without glycosylation and apoC-III[subscript 0b] with glycosylation), monosialylated (apoC-III1) or disialylated (apoC-III2) proteoforms. Our aim was to clarify the relationship between apoC-III sialylation proteoforms with fasting plasma TG concentrations.

Methods: In 204 non-diabetic adolescent participants, the

Introduction: Apolipoprotein C-III (apoC-III) regulates triglyceride (TG) metabolism. In plasma, apoC-III exists in non-sialylated (apoC-III0a without glycosylation and apoC-III[subscript 0b] with glycosylation), monosialylated (apoC-III1) or disialylated (apoC-III2) proteoforms. Our aim was to clarify the relationship between apoC-III sialylation proteoforms with fasting plasma TG concentrations.

Methods: In 204 non-diabetic adolescent participants, the relative abundance of apoC-III plasma proteoforms was measured using mass spectrometric immunoassay.

Results: Compared with the healthy weight subgroup (n = 16), the ratios of apoC-III0a, apoC-III0b, and apoC-III1 to apoC-III2 were significantly greater in overweight (n = 33) and obese participants (n = 155). These ratios were positively correlated with BMI z-scores and negatively correlated with measures of insulin sensitivity (S[subscript i]). The relationship of apoC-III1 / apoC-III2 with Si persisted after adjusting for BMI (p = 0.02). Fasting TG was correlated with the ratio of apoC-III0a / apoC-III2 (r = 0.47, p<0.001), apoC-III0b / apoC-III2 (r = 0.41, p<0.001), apoC-III1 / apoC-III2 (r = 0.43, p<0.001). By examining apoC-III concentrations, the association of apoC-III proteoforms with TG was driven by apoC-III0a (r = 0.57, p<0.001), apoC-III0b (r = 0.56. p<0.001) and apoC-III1 (r = 0.67, p<0.001), but not apoC-III2 (r = 0.006, p = 0.9) concentrations, indicating that apoC-III relationship with plasma TG differed in apoC-III2 compared with the other proteoforms.

Conclusion: We conclude that apoC-III0a, apoC-III0b, and apoC-III1, but not apoC-III2 appear to be under metabolic control and associate with fasting plasma TG. Measurement of apoC-III proteoforms can offer insights into the biology of TG metabolism in obesity.

ContributorsYassine, Hussein N. (Author) / Trenchevska, Olgica (Author) / Ramrakhiani, Ambika (Author) / Parekh, Aarushi (Author) / Koska, Juraj (Author) / Walker, Ryan W. (Author) / Billheimer, Dean (Author) / Reaven, Peter D. (Author) / Yen, Frances T. (Author) / Nelson, Randall (Author) / Goran, Michael I. (Author) / Nedelkov, Dobrin (Author) / Biodesign Institute (Contributor)
Created2015-12-03
128947-Thumbnail Image.png
Description

Background: The physical health status of vegetarians has been extensively reported, but there is limited research regarding the mental health status of vegetarians, particularly with regard to mood. Vegetarian diets exclude fish, the major dietary source of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), critical regulators of brain cell structure and

Background: The physical health status of vegetarians has been extensively reported, but there is limited research regarding the mental health status of vegetarians, particularly with regard to mood. Vegetarian diets exclude fish, the major dietary source of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), critical regulators of brain cell structure and function. Omnivorous diets low in EPA and DHA are linked to impaired mood states in observational and experimental studies.

Methods: We examined associations between mood state and polyunsaturated fatty acid intake as a result of adherence to a vegetarian or omnivorous diet in a cross-sectional study of 138 healthy Seventh Day Adventist men and women residing in the Southwest. Participants completed a quantitative food frequency questionnaire, Depression Anxiety Stress Scale (DASS), and Profile of Mood States (POMS) questionnaires.

Results: Vegetarians (VEG:n = 60) reported significantly less negative emotion than omnivores (OMN:n = 78) as measured by both mean total DASS and POMS scores (8.32 ± 0.88 vs 17.51 ± 1.88, p = .000 and 0.10 ± 1.99 vs 15.33 ± 3.10, p = .007, respectively). VEG reported significantly lower mean intakes of EPA (p < .001), DHA (p < .001), as well as the omega-6 fatty acid, arachidonic acid (AA; p < .001), and reported higher mean intakes of shorter-chain α-linolenic acid (p < .001) and linoleic acid (p < .001) than OMN. Mean total DASS and POMS scores were positively related to mean intakes of EPA (p < 0.05), DHA (p < 0.05), and AA (p < 0.05), and inversely related to intakes of ALA (p < 0.05), and LA (p < 0.05), indicating that participants with low intakes of EPA, DHA, and AA and high intakes of ALA and LA had better mood.

Conclusions: The vegetarian diet profile does not appear to adversely affect mood despite low intake of long-chain omega-3 fatty acids.

ContributorsBeezhold, Bonnie (Author) / Johnston, Carol (Author) / Daigle, Deanna (Author) / College of Health Solutions (Contributor)
Created2010-06-01
129059-Thumbnail Image.png
Description

Background: Peanut consumption favorably influences satiety. This study examined the acute effect of peanut versus grain bar preloads on postmeal satiety and glycemia in healthy adults and the long-term effect of these meal preloads on body mass in healthy overweight adults.

Methods: In the acute crossover trial (n = 15; 28.4 ± 2.9 y; 23.1 ± 0.9

Background: Peanut consumption favorably influences satiety. This study examined the acute effect of peanut versus grain bar preloads on postmeal satiety and glycemia in healthy adults and the long-term effect of these meal preloads on body mass in healthy overweight adults.

Methods: In the acute crossover trial (n = 15; 28.4 ± 2.9 y; 23.1 ± 0.9 kg/m2), the preload (isoenergetic peanut or grain bar with water, or water alone) was followed after 60 min with ingestion of a standardized glycemic test meal. Satiety and blood glucose were assessed immediately prior to the preload and to the test meal, and for two hours postmeal at 30-min intervals. In the parallel-arm, randomized trial (n = 44; 40.5 ± 1.6 y, 31.8 ± 0.9 kg/m2), the peanut or grain bar preload was consumed one hour prior to the evening meal for eight weeks. Body mass was measured at 2-week intervals, and secondary endpoints included blood hemoglobin A1c and energy intake as assessed by 3-d diet records collected at pre-trial and trial weeks 1 and 8.

Results: Satiety was elevated in the postprandial period following grain bar ingestion in comparison to peanut or water ingestion (p = 0.001, repeated-measures ANOVA). Blood glucose was elevated one hour after ingestion of the grain bar as compared to the peanut or water treatments; yet, total glycemia did not vary between treatments in the two hour postprandial period. In the 8-week trial, body mass was reduced for the grain bar versus peanut groups after eight weeks (−1.3 ± 0.4 kg versus −0.2 ± 0.3 kg, p = 0.033, analysis of covariance). Energy intake was reduced by 458 kcal/d in the first week of the trial for the grain bar group as compared to the peanut group (p = 0.118). Hemoglobin A1c changed significantly between groups during the trial (−0.25 ± 0.07% and −0.18 ± 0.12% for the grain bar and peanut groups respectively, p = 0.001).

Conclusions: Compared to an isoenergetic peanut preload, consumption of a grain bar preload one hour prior to a standardized meal significantly raised postmeal satiety. Moreover, consumption of the grain bar prior to the evening meal was associated with significant weight loss over time suggesting that glycemic carbohydrate ingestion prior to meals may be a weight management strategy.

ContributorsJohnston, Carol (Author) / Catherine, Trier (Author) / Fleming, Katie (Author) / College of Health Solutions (Contributor)
Created2013-03-27