This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 22
Filtering by

Clear all filters

Description

Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade and tree shade on thermal comfort through meteorological observations and field surveys at a pedestrian mall on Arizona State University's Tempe campus. During the course of 1

Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade and tree shade on thermal comfort through meteorological observations and field surveys at a pedestrian mall on Arizona State University's Tempe campus. During the course of 1 year, on selected clear calm days representative of each season, we conducted hourly meteorological transects from 7:00 a.m. to 6:00 p.m. and surveyed 1284 people about their thermal perception, comfort, and preferences. Shade lowered thermal sensation votes by approximately 1 point on a semantic differential 9-point scale, increasing thermal comfort in all seasons except winter. Shade type (tree or solar canopy) did not significantly impact perceived comfort, suggesting that artificial and natural shades are equally efficient in hot dry climates. Globe temperature explained 51 % of the variance in thermal sensation votes and was the only statistically significant meteorological predictor. Important non-meteorological factors included adaptation, thermal comfort vote, thermal preference, gender, season, and time of day. A regression of subjective thermal sensation on physiological equivalent temperature yielded a neutral temperature of 28.6 °C. The acceptable comfort range was 19.1 °C-38.1 °C with a preferred temperature of 20.8 °C. Respondents exposed to above neutral temperature felt more comfortable if they had been in air-conditioning 5 min prior to the survey, indicating a lagged response to outdoor conditions. Our study highlights the importance of active solar access management in hot urban areas to reduce thermal stress.

ContributorsMiddel, Ariane (Author) / Selover, Nancy (Author) / Hagen, Bjorn (Author) / Chhetri, Nalini (Author)
Created2015-04-13
Description

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the three-dimensional microclimate model ENVI-met. The model was validated using weather observations from the North Desert Village (NDV) landscape experiment, located on the Arizona State University's Polytechnic campus. The NDV is an ideal site to determine the model's input parameters, since it is a controlled environment recreating three prevailing residential landscape types in the Phoenix metropolitan area (mesic, oasis, and xeric). After validation, we designed five neighborhoods with different urban forms that represent a realistic cross-section of typical residential neighborhoods in Phoenix. The scenarios follow the Local Climate Zone (LCZ) classification scheme after Stewart and Oke. We then combined the neighborhoods with three landscape designs and, using ENVI-met, simulated microclimate conditions for these neighborhoods for a typical summer day. Results were analyzed in terms of mid-afternoon air temperature distribution and variation, ventilation, surface temperatures, and shading. Findings show that advection is important for the distribution of within-design temperatures and that spatial differences in cooling are strongly related to solar radiation and local shading patterns. In mid-afternoon, dense urban forms can create local cool islands. Our approach suggests that the LCZ concept is useful for planning and design purposes.

ContributorsMiddel, Ariane (Author) / Hab, Kathrin (Author) / Brazel, Anthony J. (Author) / Martin, Chris A. (Author) / Guhathakurta, Subhrajit (Author)
Created2014-02
128725-Thumbnail Image.png
Description

In spite of well-documented health benefits of vegetarian diets, less is known regarding the effects of these diets on athletic performance. In this cross-sectional study, we compared elite vegetarian and omnivore adult endurance athletes for maximal oxygen uptake (VO2 max) and strength. Twenty-seven vegetarian (VEG) and 43 omnivore (OMN) athletes

In spite of well-documented health benefits of vegetarian diets, less is known regarding the effects of these diets on athletic performance. In this cross-sectional study, we compared elite vegetarian and omnivore adult endurance athletes for maximal oxygen uptake (VO2 max) and strength. Twenty-seven vegetarian (VEG) and 43 omnivore (OMN) athletes were evaluated using VO2 max testing on the treadmill, and strength assessment using a dynamometer to determine peak torque for leg extensions. Dietary data were assessed using detailed seven-day food logs. Although total protein intake was lower among vegetarians in comparison to omnivores, protein intake as a function of body mass did not differ by group (1.2 ± 0.3 and 1.4 ± 0.5 g/kg body mass for VEG and OMN respectively, p = 0.220). VO2 max differed for females by diet group (53.0 ± 6.9 and 47.1 ± 8.6 mL/kg/min for VEG and OMN respectively, p < 0.05) but not for males (62.6 ± 15.4 and 55.7 ± 8.4 mL/kg/min respectively). Peak torque did not differ significantly between diet groups. Results from this study indicate that vegetarian endurance athletes’ cardiorespiratory fitness was greater than that for their omnivorous counterparts, but that peak torque did not differ between diet groups. These data suggest that vegetarian diets do not compromise performance outcomes and may facilitate aerobic capacity in athletes.

ContributorsLynch, Heidi (Author) / Wharton, Christopher (Author) / Johnston, Carol (Author) / College of Health Solutions (Contributor)
Created2016-11-15
128591-Thumbnail Image.png
Description

Gas seeps emanating from Yanartaş (Chimera), Turkey, have been documented for thousands of years. Active serpentinization produces hydrogen and a range of carbon gases that may provide fuel for life. Here we report a newly discovered, ephemeral fluid seep emanating from a small gas vent at Yanartaş. Fluids and biofilms

Gas seeps emanating from Yanartaş (Chimera), Turkey, have been documented for thousands of years. Active serpentinization produces hydrogen and a range of carbon gases that may provide fuel for life. Here we report a newly discovered, ephemeral fluid seep emanating from a small gas vent at Yanartaş. Fluids and biofilms were sampled at the source and points downstream. We describe site conditions, and provide microbiological data in the form of enrichment cultures, Scanning electron microscopy (SEM), carbon and nitrogen isotopic composition of solids, and PCR screens of nitrogen cycle genes. Source fluids are pH 11.95, with a Ca:Mg of ~200, and sediments under the ignited gas seep measure 60°C. Collectively, these data suggest the fluid is the product of active serpentinization at depth. Source sediments are primarily calcite and alteration products (chlorite and montmorillonite). Downstream, biofilms are mixed with montmorillonite. SEM shows biofilms distributed homogeneously with carbonates. Organic carbon accounts for 60% of the total carbon at the source, decreasing downstream to <15% as inorganic carbon precipitates. δ13C ratios of the organic carbon fraction of solids are depleted (−25 to −28‰) relative to the carbonates (−11 to −20‰). We conclude that heterotrophic processes are dominant throughout the surface ecosystem, and carbon fixation may be key down channel. δ15N ratios ~3‰, and absence of nifH in extracted DNA suggest that nitrogen fixation is not occurring in sediments. However, the presence of narG and nirS at most locations and in enrichments indicates genomic potential for nitrate and nitrite reduction. This small seep with shallow run-off is likely ephemeral, but abundant preserved microterracettes in the outflow and the surrounding area suggest it has been present for some time. This site and others like it present an opportunity for investigations of preserved deep biosphere signatures, and subsurface-surface interactions.

ContributorsMeyer-Dombard, D'Arcy R. (Author) / Woycheese, Kristin M. (Author) / Yargicoglu, Erin N. (Author) / Cardace, Dawn (Author) / Shock, Everett (Author) / Gulecal-Pektas, Yasemin (Author) / Temel, Mustafa (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-01-19
128833-Thumbnail Image.png
Description

Over 100 hot spring sediment samples were collected from 28 sites in 12 areas/regions, while recording as many coincident geochemical properties as feasible (>60 analytes). PCR was used to screen samples for Korarchaeota 16S rRNA genes. Over 500 Korarchaeota 16S rRNA genes were screened by RFLP analysis and 90 were

Over 100 hot spring sediment samples were collected from 28 sites in 12 areas/regions, while recording as many coincident geochemical properties as feasible (>60 analytes). PCR was used to screen samples for Korarchaeota 16S rRNA genes. Over 500 Korarchaeota 16S rRNA genes were screened by RFLP analysis and 90 were sequenced, resulting in identification of novel Korarchaeota phylotypes and exclusive geographical variants. Korarchaeota diversity was low, as in other terrestrial geothermal systems, suggesting a marine origin for Korarchaeota with subsequent niche-invasion into terrestrial systems. Korarchaeota endemism is consistent with endemism of other terrestrial thermophiles and supports the existence of dispersal barriers. Korarchaeota were found predominantly in >55°C springs at pH 4.7–8.5 at concentrations up to 6.6×106 16S rRNA gene copies g-1 wet sediment. In Yellowstone National Park (YNP), Korarchaeota were most abundant in springs with a pH range of 5.7 to 7.0. High sulfate concentrations suggest these fluids are influenced by contributions from hydrothermal vapors that may be neutralized to some extent by mixing with water from deep geothermal sources or meteoric water. In the Great Basin (GB), Korarchaeota were most abundant at spring sources of pH<7.2 with high particulate C content and high alkalinity, which are likely to be buffered by the carbonic acid system. It is therefore likely that at least two different geological mechanisms in YNP and GB springs create the neutral to mildly acidic pH that is optimal for Korarchaeota. A classification support vector machine (C-SVM) trained on single analytes, two analyte combinations, or vectors from non-metric multidimensional scaling models was able to predict springs as Korarchaeota-optimal or sub-optimal habitats with accuracies up to 95%. To our knowledge, this is the most extensive analysis of the geochemical habitat of any high-level microbial taxon and the first application of a C-SVM to microbial ecology.

ContributorsMiller-Coleman, Robin L. (Author) / Dodsworth, Jeremy A. (Author) / Ross, Christian A. (Author) / Shock, Everett (Author) / Williams, Amanda (Author) / Hartnett, Hilairy (Author) / McDonald, Austin I. (Author) / Havig, Jeff (Author) / Hedlund, Brian P. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2012-05-04
128824-Thumbnail Image.png
Description

Many studies link the compositions of microbial communities to their environments, but the energetics of organism-specific biomass synthesis as a function of geochemical variables have rarely been assessed. We describe a thermodynamic model that integrates geochemical and metagenomic data for biofilms sampled at five sites along a thermal and chemical

Many studies link the compositions of microbial communities to their environments, but the energetics of organism-specific biomass synthesis as a function of geochemical variables have rarely been assessed. We describe a thermodynamic model that integrates geochemical and metagenomic data for biofilms sampled at five sites along a thermal and chemical gradient in the outflow channel of the hot spring known as “Bison Pool” in Yellowstone National Park. The relative abundances of major phyla in individual communities sampled along the outflow channel are modeled by computing metastable equilibrium among model proteins with amino acid compositions derived from metagenomic sequences. Geochemical conditions are represented by temperature and activities of basis species, including pH and oxidation-reduction potential quantified as the activity of dissolved hydrogen. By adjusting the activity of hydrogen, the model can be tuned to closely approximate the relative abundances of the phyla observed in the community profiles generated from BLAST assignments. The findings reveal an inverse relationship between the energy demand to form the proteins at equal thermodynamic activities and the abundance of phyla in the community. The distance from metastable equilibrium of the communities, assessed using an equation derived from energetic considerations that is also consistent with the information-theoretic entropy change, decreases along the outflow channel. Specific divergences from metastable equilibrium, such as an underprediction of the relative abundances of phototrophic organisms at lower temperatures, can be explained by considering additional sources of energy and/or differences in growth efficiency. Although the metabolisms used by many members of these communities are driven by chemical disequilibria, the results support the possibility that higher-level patterns of chemotrophic microbial ecosystems are shaped by metastable equilibrium states that depend on both the composition of biomass and the environmental conditions.

ContributorsDick, Jeffrey M. (Author) / Shock, Everett (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-09-02
129247-Thumbnail Image.png
Description

The City of Phoenix (Arizona, USA) developed a Tree and Shade Master Plan and a Cool Roofs initiative to ameliorate extreme heat during the summer months in their arid city. This study investigates the impact of the City's heat mitigation strategies on daytime microclimate for a pre-monsoon summer day under

The City of Phoenix (Arizona, USA) developed a Tree and Shade Master Plan and a Cool Roofs initiative to ameliorate extreme heat during the summer months in their arid city. This study investigates the impact of the City's heat mitigation strategies on daytime microclimate for a pre-monsoon summer day under current climate conditions and two climate change scenarios. We assessed the cooling effect of trees and cool roofs in a Phoenix residential neighborhood using the microclimate model ENVI-met. First, using xeric landscaping as a base, we created eight tree planting scenarios (from 0% canopy cover to 30% canopy cover) for the neighborhood to characterize the relationship between canopy cover and daytime cooling benefit of trees. In a second set of simulations, we ran ENVI-met for nine combined tree planting and landscaping scenarios (mesic, oasis, and xeric) with regular roofs and cool roofs under current climate conditions and two climate change projections. For each of the 54 scenarios, we compared average neighborhood mid-afternoon air temperatures and assessed the benefits of each heat mitigation measure under current and projected climate conditions. Findings suggest that the relationship between percent canopy cover and air temperature reduction is linear, with 0.14 °C cooling per percent increase in tree cover for the neighborhood under investigation. An increase in tree canopy cover from the current 10% to a targeted 25% resulted in an average daytime cooling benefit of up to 2.0 °C in residential neighborhoods at the local scale. Cool roofs reduced neighborhood air temperatures by 0.3 °C when implemented on residential homes. The results from this city-specific mitigation project will inform messaging campaigns aimed at engaging the city decision makers, industry, and the public in the green building and urban forestry initiatives.

ContributorsMiddel, Ariane (Author) / Chhetri, Nalini (Author) / Quay, Ray (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-11-30
128916-Thumbnail Image.png
Description

We have constructed a conceptual model of biogeochemical cycles and metabolic and microbial community shifts within a hot spring ecosystem via coordinated analysis of the “Bison Pool” (BP) Environmental Genome and a complementary contextual geochemical dataset of ∼75 geochemical parameters. 2,321 16S rRNA clones and 470 megabases of environmental sequence

We have constructed a conceptual model of biogeochemical cycles and metabolic and microbial community shifts within a hot spring ecosystem via coordinated analysis of the “Bison Pool” (BP) Environmental Genome and a complementary contextual geochemical dataset of ∼75 geochemical parameters. 2,321 16S rRNA clones and 470 megabases of environmental sequence data were produced from biofilms at five sites along the outflow of BP, an alkaline hot spring in Sentinel Meadow (Lower Geyser Basin) of Yellowstone National Park. This channel acts as a >22 m gradient of decreasing temperature, increasing dissolved oxygen, and changing availability of biologically important chemical species, such as those containing nitrogen and sulfur. Microbial life at BP transitions from a 92°C chemotrophic streamer biofilm community in the BP source pool to a 56°C phototrophic mat community. We improved automated annotation of the BP environmental genomes using BLAST-based Markov clustering. We have also assigned environmental genome sequences to individual microbial community members by complementing traditional homology-based assignment with nucleotide word-usage algorithms, allowing more than 70% of all reads to be assigned to source organisms. This assignment yields high genome coverage in dominant community members, facilitating reconstruction of nearly complete metabolic profiles and in-depth analysis of the relation between geochemical and metabolic changes along the outflow. We show that changes in environmental conditions and energy availability are associated with dramatic shifts in microbial communities and metabolic function. We have also identified an organism constituting a novel phylum in a metabolic “transition” community, located physically between the chemotroph- and phototroph-dominated sites. The complementary analysis of biogeochemical and environmental genomic data from BP has allowed us to build ecosystem-based conceptual models for this hot spring, reconstructing whole metabolic networks in order to illuminate community roles in shaping and responding to geochemical variability.

ContributorsSwingley, Wesley D. (Author) / Meyer-Dombard, D'Arcy R. (Author) / Shock, Everett (Author) / Alsop, Eric (Author) / Falenski, Heinz (Author) / Havig, Jeff (Author) / Raymond, Jason (Author) / College of Liberal Arts and Sciences (Contributor)
Created2012-06-04
128644-Thumbnail Image.png
Description

The early indications of vitamin C deficiency are unremarkable (fatigue, malaise, depression) and may manifest as a reduced desire to be physically active; moreover, hypovitaminosis C may be associated with increased cold duration and severity. This study examined the impact of vitamin C on physical activity and respiratory tract infections

The early indications of vitamin C deficiency are unremarkable (fatigue, malaise, depression) and may manifest as a reduced desire to be physically active; moreover, hypovitaminosis C may be associated with increased cold duration and severity. This study examined the impact of vitamin C on physical activity and respiratory tract infections during the peak of the cold season. Healthy non-smoking adult men (18–35 years; BMI <34 kg/m2; plasma vitamin C<45 µmol/L) received either 1000 mg of vitamin C daily (n = 15) or placebo (n = 13) in a randomized, double-blind, eight-week trial. All participants completed the Wisconsin Upper Respiratory Symptom Survey-21 daily and the Godin Leisure-Time Exercise Questionnaire weekly. In the final two weeks of the trial, the physical activity score rose modestly for the vitamin C group vs. placebo after adjusting for baseline values: +39.6% (95% CI [−4.5,83.7]; p = 0.10). The number of participants reporting cold episodes was 7 and 11 for the vitamin C and placebo groups respectively during the eight-week trial (RR = 0.55; 95% CI [0.33,0.94]; p = 0.04) and cold duration was reduced 59% in the vitamin C versus placebo groups (−3.2 days; 95% CI [−7.0,0.6]; p = 0.06). These data suggest measurable health advantages associated with vitamin C supplementation in a population with adequate-to-low vitamin C status.

ContributorsJohnston, Carol (Author) / Barkyoumb, Gillean M. (Author) / Schumacher, Sara S. (Author) / College of Health Solutions (Contributor)
Created2014-07-09
128968-Thumbnail Image.png
Description

Background: Omnivorous diets are high in arachidonic acid (AA) compared to vegetarian diets. Research shows that high intakes of AA promote changes in brain that can disturb mood. Omnivores who eat fish regularly increase their intakes of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), fats that oppose the negative effects of

Background: Omnivorous diets are high in arachidonic acid (AA) compared to vegetarian diets. Research shows that high intakes of AA promote changes in brain that can disturb mood. Omnivores who eat fish regularly increase their intakes of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), fats that oppose the negative effects of AA in vivo. In a recent cross-sectional study, omnivores reported significantly worse mood than vegetarians despite higher intakes of EPA and DHA. This study investigated the impact of restricting meat, fish, and poultry on mood.

Findings: Thirty-nine omnivores were randomly assigned to a control group consuming meat, fish, and poultry daily (OMN); a group consuming fish 3-4 times weekly but avoiding meat and poultry (FISH), or a vegetarian group avoiding meat, fish, and poultry (VEG). At baseline and after two weeks, participants completed a food frequency questionnaire, the Profile of Mood States questionnaire and the Depression Anxiety and Stress Scales. After the diet intervention, VEG participants reduced their EPA, DHA, and AA intakes, while FISH participants increased their EPA and DHA intakes. Mood scores were unchanged for OMN or FISH participants, but several mood scores for VEG participants improved significantly after two weeks.

Conclusions: Restricting meat, fish, and poultry improved some domains of short-term mood state in modern omnivores. To our knowledge, this is the first trial to examine the impact of restricting meat, fish, and poultry on mood state in omnivores.

ContributorsBeezhold, Bonnie L. (Author) / Johnston, Carol (Author) / College of Health Solutions (Contributor)
Created2012-02-14