This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 11 - 20 of 26
Filtering by

Clear all filters

127857-Thumbnail Image.png
Description

A semi-nonparametric generalized multinomial logit model, formulated using orthonormal Legendre polynomials to extend the standard Gumbel distribution, is presented in this paper. The resulting semi-nonparametric function can represent a probability density function for a large family of multimodal distributions. The model has a closed-form log-likelihood function that facilitates model estimation.

A semi-nonparametric generalized multinomial logit model, formulated using orthonormal Legendre polynomials to extend the standard Gumbel distribution, is presented in this paper. The resulting semi-nonparametric function can represent a probability density function for a large family of multimodal distributions. The model has a closed-form log-likelihood function that facilitates model estimation. The proposed method is applied to model commute mode choice among four alternatives (auto, transit, bicycle and walk) using travel behavior data from Argau, Switzerland. Comparisons between the multinomial logit model and the proposed semi-nonparametric model show that violations of the standard Gumbel distribution assumption lead to considerable inconsistency in parameter estimates and model inferences.

ContributorsWang, Ke (Author) / Ye, Xin (Author) / Pendyala, Ram (Author) / Zou, Yajie (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2017-10-26
127856-Thumbnail Image.png
Description

A general consensus on the concept of rainfall intermittency has not yet been reached, and intermittency is often attributed to different aspects of rainfall variability, including the fragmentation of the rainfall support (i.e., the alternation of wet and dry intervals) and the strength of intensity fluctuations and bursts. To explore

A general consensus on the concept of rainfall intermittency has not yet been reached, and intermittency is often attributed to different aspects of rainfall variability, including the fragmentation of the rainfall support (i.e., the alternation of wet and dry intervals) and the strength of intensity fluctuations and bursts. To explore these different aspects, a systematic analysis of rainfall intermittency properties in the time domain is presented using high-resolution (1-min) data recorded by a network of 201 tipping-bucket gauges covering the entire island of Sardinia (Italy). Four techniques, including spectral and scale invariance analysis, and computation of clustering and intermittency exponents, are applied to quantify the contribution of the alternation of dry and wet intervals (i.e., the rainfall support fragmentation), and the fluctuations of intensity amplitudes, to the overall intermittency of the rainfall process. The presence of three ranges of scaling regimes between 1 min to ~ 45 days is first demonstrated. In accordance with past studies, these regimes can be associated with a range dominated by single storms, a regime typical of frontal systems, and a transition zone.

The positions of the breaking points separating these regimes change with the applied technique, suggesting that different tools explain different aspects of rainfall variability. Results indicate that the intermittency properties of rainfall support are fairly similar across the island, while metrics related to rainfall intensity fluctuations are characterized by significant spatial variability, implying that the local climate has a significant effect on the amplitude of rainfall fluctuations and minimal influence on the process of rainfall occurrence. In addition, for each analysis tool, evidence is shown of spatial patterns of the scaling exponents computed in the range of frontal systems. These patterns resemble the main pluviometric regimes observed on the island and, thus, can be associated with the corresponding synoptic circulation patterns. Last but not least, we demonstrate how the methodology adopted to sample the rainfall signal from the records of the tipping instants can significantly affect the intermittency analysis, especially at smaller scales. The multifractal scale invariance analysis is the only tool that is insensitive to the sampling approach. Results of this work may be useful to improve the calibration of stochastic algorithms used to downscale coarse rainfall predictions of climate and weather forecasting models, as well as the parameterization of intensity-duration-frequency curves, adopted for land planning and design of civil infrastructures.

ContributorsMascaro, Giuseppe (Author) / Deidda, R. (Author) / Hellies, M. (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2013-01-29
127852-Thumbnail Image.png
Description

Delays are a major cause for concern in the construction industry in Saudi Arabia. This paper identifies the main causes of delay in infrastructure projects in Mecca, Saudi Arabia, and compares these with projects around the country and other Gulf countries. Data was obtained from 49 infrastructure projects undertaken by

Delays are a major cause for concern in the construction industry in Saudi Arabia. This paper identifies the main causes of delay in infrastructure projects in Mecca, Saudi Arabia, and compares these with projects around the country and other Gulf countries. Data was obtained from 49 infrastructure projects undertaken by the owner and were analyzed quantitatively to understand the severity and causes of delay. 10 risk factors were identified and were grouped into four categories. Average delay in infrastructure projects in Mecca was found to be 39%. The most severe cause of delay was found to be the land acquisition factor. This highlights the critical land ownership and acquisition issues that are prevailing in the city. Additionally, other factors that contribute to delay include contractors’ lack of expertise, re-designing, and haphazard underground utilities (line services). It is concluded that the majority of project delays were caused from the owner's side as compared to contractors, consultants, and other project's stakeholders. This finding matched with the research findings of the Gulf Countries Construction (GCC) Industry's literature. This study fills an important practice and research gap for improving the efficiency in delivering infrastructure projects in the holy city of Mecca and Gulf countries at large.

ContributorsElawi, Ghazi (Author) / Algahtany, Mohammed (Author) / Kashiwagi, Dean (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2016-05-20
127837-Thumbnail Image.png
Description

Urban transportation systems are vulnerable to congestion, accidents, weather, special events, and other costly delays. Whereas typical policy responses prioritize reduction of delays under normal conditions to improve the efficiency of urban road systems, analytic support for investments that improve resilience (defined as system recovery from additional disruptions) is still

Urban transportation systems are vulnerable to congestion, accidents, weather, special events, and other costly delays. Whereas typical policy responses prioritize reduction of delays under normal conditions to improve the efficiency of urban road systems, analytic support for investments that improve resilience (defined as system recovery from additional disruptions) is still scarce. In this effort, we represent paved roads as a transportation network by mapping intersections to nodes and road segments between the intersections to links. We built road networks for 40 of the urban areas defined by the U.S. Census Bureau. We developed and calibrated a model to evaluate traffic delays using link loads. The loads may be regarded as traffic-based centrality measures, estimating the number of individuals using corresponding road segments. Efficiency was estimated as the average annual delay per peak-period auto commuter, and modeled results were found to be close to observed data, with the notable exception of New York City. Resilience was estimated as the change in efficiency resulting from roadway disruptions and was found to vary between cities, with increased delays due to a 5% random loss of road linkages ranging from 9.5% in Los Angeles to 56.0% in San Francisco. The results demonstrate that many urban road systems that operate inefficiently under normal conditions are nevertheless resilient to disruption, whereas some more efficient cities are more fragile. The implication is that resilience, not just efficiency, should be considered explicitly in roadway project selection and justify investment opportunities related to disaster and other disruptions.

ContributorsGanin, Alexander A. (Author) / Kitsak, Maksim (Author) / Marchese, Dayton (Author) / Keisler, Jeffrey M. (Author) / Seager, Thomas (Author) / Linkov, Igor (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2017-12-20
127825-Thumbnail Image.png
Description

The human hand comprises complex sensorimotor functions that can be impaired by neurological diseases and traumatic injuries. Effective rehabilitation can bring the impaired hand back to a functional state because of the plasticity of the central nervous system to relearn and remodel the lost synapses in the brain. Current rehabilitation

The human hand comprises complex sensorimotor functions that can be impaired by neurological diseases and traumatic injuries. Effective rehabilitation can bring the impaired hand back to a functional state because of the plasticity of the central nervous system to relearn and remodel the lost synapses in the brain. Current rehabilitation therapies focus on strengthening motor skills, such as grasping, employ multiple objects of varying stiffness so that affected persons can experience a wide range of strength training. These devices have limited range of stiffness due to the rigid mechanisms employed in their variable stiffness actuators. This paper presents a novel soft robotic haptic device for neuromuscular rehabilitation of the hand, which is designed to offer adjustable stiffness and can be utilized in both clinical and home settings. The device eliminates the need for multiple objects by employing a pneumatic soft structure made with highly compliant materials that act as the actuator of the haptic interface. It is made with interchangeable sleeves that can be customized to include materials of varying stiffness to increase the upper limit of the stiffness range. The device is fabricated using existing 3D printing technologies, and polymer molding and casting techniques, thus keeping the cost low and throughput high. The haptic interface is linked to either an open-loop system that allows for an increased pressure during usage or closed-loop system that provides pressure regulation in accordance to the stiffness the user specifies. Preliminary evaluation is performed to characterize the effective controllable region of variance in stiffness. It was found that the region of controllable stiffness was between points 3 and 7, where the stiffness appeared to plateau with each increase in pressure. The two control systems are tested to derive relationships between internal pressure, grasping force exertion on the surface, and displacement using multiple probing points on the haptic device. Additional quantitative evaluation is performed with study participants and juxtaposed to a qualitative analysis to ensure adequate perception in compliance variance. The qualitative evaluation showed that greater than 60% of the trials resulted in the correct perception of stiffness in the haptic device.

ContributorsSebastian, Frederick (Author) / Fu, Qiushi (Author) / Santello, Marco (Author) / Polygerinos, Panagiotis (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2017-12-20
129252-Thumbnail Image.png
Description

Physical mechanisms of incongruency between observations and Weather Research and Forecasting (WRF) Model predictions are examined. Limitations of evaluation are constrained by (i) parameterizations of model physics, (ii) parameterizations of input data, (iii) model resolution, and (iv) flux observation resolution. Observations from a new 22.1-m flux tower situated within a

Physical mechanisms of incongruency between observations and Weather Research and Forecasting (WRF) Model predictions are examined. Limitations of evaluation are constrained by (i) parameterizations of model physics, (ii) parameterizations of input data, (iii) model resolution, and (iv) flux observation resolution. Observations from a new 22.1-m flux tower situated within a residential neighborhood in Phoenix, Arizona, are utilized to evaluate the ability of the urbanized WRF to resolve finescale surface energy balance (SEB) when using the urban classes derived from the 30-m-resolution National Land Cover Database. Modeled SEB response to a large seasonal variation of net radiation forcing was tested during synoptically quiescent periods of high pressure in winter 2011 and premonsoon summer 2012. Results are presented from simulations employing five nested domains down to 333-m horizontal resolution. A comparative analysis of model cases testing parameterization of physical processes was done using four configurations of urban parameterization for the bulk urban scheme versus three representations with the Urban Canopy Model (UCM) scheme, and also for two types of planetary boundary layer parameterization: the local Mellor–Yamada–Janjić scheme and the nonlocal Yonsei University scheme. Diurnal variation in SEB constituent fluxes is examined in relation to surface-layer stability and modeled diagnostic variables. Improvement is found when adapting UCM for Phoenix with reduced errors in the SEB components. Finer model resolution is seen to have insignificant (<1 standard deviation) influence on mean absolute percent difference of 30-min diurnal mean SEB terms.

ContributorsShaffer, Stephen (Author) / Chow, Winston, 1951- (Author) / Georgescu, Matei (Author) / Hyde, Peter (Author) / Jenerette, G. D. (Author) / Mahalov, Alex (Author) / Moustaoui, Mohamed (Author) / Ruddell, Benjamin (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-06-11
129251-Thumbnail Image.png
Description

Forecasts of noise pollution from a highway line segment noise source are obtained from a sound propagation model utilizing effective sound speed profiles derived from a Numerical Weather Prediction (NWP) limited area forecast with 1 km horizontal resolution and near-ground vertical resolution finer than 20 m. Methods for temporal along

Forecasts of noise pollution from a highway line segment noise source are obtained from a sound propagation model utilizing effective sound speed profiles derived from a Numerical Weather Prediction (NWP) limited area forecast with 1 km horizontal resolution and near-ground vertical resolution finer than 20 m. Methods for temporal along with horizontal and vertical spatial nesting are demonstrated within the NWP model for maintaining forecast feasibility. It is shown that vertical nesting can improve the prediction of finer structures in near-ground temperature and velocity profiles, such as morning temperature inversions and low level jet-like features. Accurate representation of these features is shown to be important for modeling sound refraction phenomena and for enabling accurate noise assessment. Comparisons are made using the parabolic equation model for predictions with profiles derived from NWP simulations and from field experiment observations during mornings on November 7 and 8, 2006 in Phoenix, Arizona. The challenges faced in simulating accurate meteorological profiles at high resolution for sound propagation applications are highlighted and areas for possible improvement are discussed.

ContributorsShaffer, Stephen (Author) / Fernando, H. J. S. (Author) / Ovenden, N. C. (Author) / Moustaoui, Mohamed (Author) / Mahalov, Alex (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-05-01
129677-Thumbnail Image.png
Description

Explicit solutions of the inhomogeneous paraxial wave equation in a linear and quadratic approximation are applied to wave fields with invariant features, such as oscillating laser beams in a parabolic waveguide and spiral light beams in varying media. A similar effect of superfocusing of particle beams in a thin monocrystal

Explicit solutions of the inhomogeneous paraxial wave equation in a linear and quadratic approximation are applied to wave fields with invariant features, such as oscillating laser beams in a parabolic waveguide and spiral light beams in varying media. A similar effect of superfocusing of particle beams in a thin monocrystal film, harmonic oscillations of cold trapped atoms, and motion in magnetic field are also mentioned.

ContributorsMahalov, Alex (Author) / Suazo, Erwin (Author) / Suslov, Sergei (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-08-15
129676-Thumbnail Image.png
Description

In this paper, we study oscillating solutions of the 1D-quintic nonlinear Schrödinger equation with the help of Wigner's quasiprobability distribution in quantum phase space. An "absolute squeezing property," namely a periodic in time total localization of wave packets at some finite spatial points without violation of the Heisenberg uncertainty principle,

In this paper, we study oscillating solutions of the 1D-quintic nonlinear Schrödinger equation with the help of Wigner's quasiprobability distribution in quantum phase space. An "absolute squeezing property," namely a periodic in time total localization of wave packets at some finite spatial points without violation of the Heisenberg uncertainty principle, is analyzed in this nonlinear model.

ContributorsMahalov, Alex (Author) / Suslov, Sergei (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-08-15
127961-Thumbnail Image.png
Description

As gesture interfaces become more main-stream, it is increasingly important to investigate the behavioral characteristics of these interactions – particularly in three-dimensional (3D) space. In this study, Fitts’ method was extended to such input technologies, and the applicability of Fitts’ law to gesture-based interactions was examined. The experiment included three

As gesture interfaces become more main-stream, it is increasingly important to investigate the behavioral characteristics of these interactions – particularly in three-dimensional (3D) space. In this study, Fitts’ method was extended to such input technologies, and the applicability of Fitts’ law to gesture-based interactions was examined. The experiment included three gesture-based input devices that utilize different techniques to capture user movement, and compared them to conventional input technologies like touchscreen and mouse. Participants completed a target-acquisition test and were instructed to move a cursor from a home location to a spherical target as quickly and accurately as possible. Three distances and three target sizes were tested six times in a randomized order for all input devices. A total of 81 participants completed all tasks. Movement time, error rate, and throughput were calculated for each input technology. Results showed that the mean movement time was highly correlated with the target's index of difficulty for all devices, providing evidence that Fitts’ law can be extended and applied to gesture-based devices. Throughputs were found to be significantly lower for the gesture-based devices compared to mouse and touchscreen, and as the index of difficulty increased, the movement time increased significantly more for these gesture technologies. Error counts were statistically higher for all gesture-based input technologies compared to mouse. In addition, error counts for all inputs were highly correlated with target width, but little impact was shown by movement distance. Overall, the findings suggest that gesture-based devices can be characterized by Fitts’ law in a similar fashion to conventional 1D or 2D devices.

ContributorsBurno, Rachael A. (Author) / Wu, Bing (Author) / Doherty, Rina (Author) / Colett, Hannah (Author) / Elnaggar, Rania (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2015-10-23