This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 11 - 20 of 38
Filtering by

Clear all filters

127852-Thumbnail Image.png
Description

Delays are a major cause for concern in the construction industry in Saudi Arabia. This paper identifies the main causes of delay in infrastructure projects in Mecca, Saudi Arabia, and compares these with projects around the country and other Gulf countries. Data was obtained from 49 infrastructure projects undertaken by

Delays are a major cause for concern in the construction industry in Saudi Arabia. This paper identifies the main causes of delay in infrastructure projects in Mecca, Saudi Arabia, and compares these with projects around the country and other Gulf countries. Data was obtained from 49 infrastructure projects undertaken by the owner and were analyzed quantitatively to understand the severity and causes of delay. 10 risk factors were identified and were grouped into four categories. Average delay in infrastructure projects in Mecca was found to be 39%. The most severe cause of delay was found to be the land acquisition factor. This highlights the critical land ownership and acquisition issues that are prevailing in the city. Additionally, other factors that contribute to delay include contractors’ lack of expertise, re-designing, and haphazard underground utilities (line services). It is concluded that the majority of project delays were caused from the owner's side as compared to contractors, consultants, and other project's stakeholders. This finding matched with the research findings of the Gulf Countries Construction (GCC) Industry's literature. This study fills an important practice and research gap for improving the efficiency in delivering infrastructure projects in the holy city of Mecca and Gulf countries at large.

ContributorsElawi, Ghazi (Author) / Algahtany, Mohammed (Author) / Kashiwagi, Dean (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2016-05-20
127848-Thumbnail Image.png
Description

There are an increasing variety of applications in which peptides are both synthesized and used attached to solid surfaces. This has created a need for high throughput sequence analysis directly on surfaces. However, common sequencing approaches that can be adapted to surface bound peptides lack the throughput often needed in

There are an increasing variety of applications in which peptides are both synthesized and used attached to solid surfaces. This has created a need for high throughput sequence analysis directly on surfaces. However, common sequencing approaches that can be adapted to surface bound peptides lack the throughput often needed in library-based applications. Here we describe a simple approach for sequence analysis directly on solid surfaces that is both high speed and high throughput, utilizing equipment available in most protein analysis facilities. In this approach, surface bound peptides, selectively labeled at their N-termini with a positive charge-bearing group, are subjected to controlled degradation in ammonia gas, resulting in a set of fragments differing by a single amino acid that remain spatially confined on the surface they were bound to. These fragments can then be analyzed by MALDI mass spectrometry, and the peptide sequences read directly from the resulting spectra.

ContributorsZhao, Zhan-Gong (Author) / Cordovez, Lalaine Anne (Author) / Johnston, Stephen (Author) / Woodbury, Neal (Author) / Biodesign Institute (Contributor)
Created2017-12-19
127837-Thumbnail Image.png
Description

Urban transportation systems are vulnerable to congestion, accidents, weather, special events, and other costly delays. Whereas typical policy responses prioritize reduction of delays under normal conditions to improve the efficiency of urban road systems, analytic support for investments that improve resilience (defined as system recovery from additional disruptions) is still

Urban transportation systems are vulnerable to congestion, accidents, weather, special events, and other costly delays. Whereas typical policy responses prioritize reduction of delays under normal conditions to improve the efficiency of urban road systems, analytic support for investments that improve resilience (defined as system recovery from additional disruptions) is still scarce. In this effort, we represent paved roads as a transportation network by mapping intersections to nodes and road segments between the intersections to links. We built road networks for 40 of the urban areas defined by the U.S. Census Bureau. We developed and calibrated a model to evaluate traffic delays using link loads. The loads may be regarded as traffic-based centrality measures, estimating the number of individuals using corresponding road segments. Efficiency was estimated as the average annual delay per peak-period auto commuter, and modeled results were found to be close to observed data, with the notable exception of New York City. Resilience was estimated as the change in efficiency resulting from roadway disruptions and was found to vary between cities, with increased delays due to a 5% random loss of road linkages ranging from 9.5% in Los Angeles to 56.0% in San Francisco. The results demonstrate that many urban road systems that operate inefficiently under normal conditions are nevertheless resilient to disruption, whereas some more efficient cities are more fragile. The implication is that resilience, not just efficiency, should be considered explicitly in roadway project selection and justify investment opportunities related to disaster and other disruptions.

ContributorsGanin, Alexander A. (Author) / Kitsak, Maksim (Author) / Marchese, Dayton (Author) / Keisler, Jeffrey M. (Author) / Seager, Thomas (Author) / Linkov, Igor (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2017-12-20
127830-Thumbnail Image.png
Description

Recent infectious outbreaks highlight the need for platform technologies that can be quickly deployed to develop therapeutics needed to contain the outbreak. We present a simple concept for rapid development of new antimicrobials. The goal was to produce in as little as one week thousands of doses of an intervention

Recent infectious outbreaks highlight the need for platform technologies that can be quickly deployed to develop therapeutics needed to contain the outbreak. We present a simple concept for rapid development of new antimicrobials. The goal was to produce in as little as one week thousands of doses of an intervention for a new pathogen. We tested the feasibility of a system based on antimicrobial synbodies. The system involves creating an array of 100 peptides that have been selected for broad capability to bind and/or kill viruses and bacteria. The peptides are pre-screened for low cell toxicity prior to large scale synthesis. Any pathogen is then assayed on the chip to find peptides that bind or kill it. Peptides are combined in pairs as synbodies and further screened for activity and toxicity. The lead synbody can be quickly produced in large scale, with completion of the entire process in one week.

ContributorsJohnston, Stephen (Author) / Domenyuk, Valeriy (Author) / Gupta, Nidhi (Author) / Tavares Batista, Milene (Author) / Lainson, John (Author) / Zhao, Zhan-Gong (Author) / Lusk, Joel (Author) / Loskutov, Andrey (Author) / Cichacz, Zbigniew (Author) / Stafford, Phillip (Author) / Legutki, Joseph Barten (Author) / Diehnelt, Chris (Author) / Biodesign Institute (Contributor)
Created2017-12-14
127825-Thumbnail Image.png
Description

The human hand comprises complex sensorimotor functions that can be impaired by neurological diseases and traumatic injuries. Effective rehabilitation can bring the impaired hand back to a functional state because of the plasticity of the central nervous system to relearn and remodel the lost synapses in the brain. Current rehabilitation

The human hand comprises complex sensorimotor functions that can be impaired by neurological diseases and traumatic injuries. Effective rehabilitation can bring the impaired hand back to a functional state because of the plasticity of the central nervous system to relearn and remodel the lost synapses in the brain. Current rehabilitation therapies focus on strengthening motor skills, such as grasping, employ multiple objects of varying stiffness so that affected persons can experience a wide range of strength training. These devices have limited range of stiffness due to the rigid mechanisms employed in their variable stiffness actuators. This paper presents a novel soft robotic haptic device for neuromuscular rehabilitation of the hand, which is designed to offer adjustable stiffness and can be utilized in both clinical and home settings. The device eliminates the need for multiple objects by employing a pneumatic soft structure made with highly compliant materials that act as the actuator of the haptic interface. It is made with interchangeable sleeves that can be customized to include materials of varying stiffness to increase the upper limit of the stiffness range. The device is fabricated using existing 3D printing technologies, and polymer molding and casting techniques, thus keeping the cost low and throughput high. The haptic interface is linked to either an open-loop system that allows for an increased pressure during usage or closed-loop system that provides pressure regulation in accordance to the stiffness the user specifies. Preliminary evaluation is performed to characterize the effective controllable region of variance in stiffness. It was found that the region of controllable stiffness was between points 3 and 7, where the stiffness appeared to plateau with each increase in pressure. The two control systems are tested to derive relationships between internal pressure, grasping force exertion on the surface, and displacement using multiple probing points on the haptic device. Additional quantitative evaluation is performed with study participants and juxtaposed to a qualitative analysis to ensure adequate perception in compliance variance. The qualitative evaluation showed that greater than 60% of the trials resulted in the correct perception of stiffness in the haptic device.

ContributorsSebastian, Frederick (Author) / Fu, Qiushi (Author) / Santello, Marco (Author) / Polygerinos, Panagiotis (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2017-12-20
128871-Thumbnail Image.png
Description

Antigen-antibody complexes are central players in an effective immune response. However, finding those interactions relevant to a particular disease state can be arduous. Nonetheless many paths to discovery have been explored since deciphering these interactions can greatly facilitate the development of new diagnostics, therapeutics, and vaccines. In silico B cell

Antigen-antibody complexes are central players in an effective immune response. However, finding those interactions relevant to a particular disease state can be arduous. Nonetheless many paths to discovery have been explored since deciphering these interactions can greatly facilitate the development of new diagnostics, therapeutics, and vaccines. In silico B cell epitope mapping approaches have been widely pursued, though success has not been consistent. Antibody mixtures in immune sera have been used as handles for biologically relevant antigens, but these and other experimental approaches have proven resource intensive and time consuming. In addition, these methods are often tailored to individual diseases or a specific proteome, rather than providing a universal platform. Most of these methods are not able to identify the specific antibody’s epitopes from unknown antigens, such as un-annotated neo antigens in cancer. Alternatively, a peptide library comprised of sequences unrestricted by naturally-found protein space provides for a universal search for mimotopes of an antibody’s epitope. Here we present the utility of such a non-natural random sequence library of 10,000 peptides physically addressed on a microarray for mimotope discovery without sequence information of the specific antigen. The peptide arrays were probed with serum from an antigen-immunized rabbit, or alternatively probed with serum pre-absorbed with the same immunizing antigen. With this positive and negative screening scheme, we identified the library-peptides as the mimotopes of the antigen. The unique library peptides were successfully used to isolate antigen-specific antibodies from complete immune serum. Sequence analysis of these peptides revealed the epitopes in the immunized antigen. We present this method as an inexpensive, efficient method for identifying mimotopes of any antibody’s targets. These mimotopes should be useful in defining both components of the antigen-antibody complex.

ContributorsWhittemore, Kurt (Author) / Johnston, Stephen (Author) / Sykes, Kathryn (Author) / Shen, Luhui (Author) / Biodesign Institute (Contributor)
Created2016-06-14
128852-Thumbnail Image.png
Description

Immunosignaturing shows promise as a general approach to diagnosis. It has been shown to detect immunological signs of infection early during the course of disease and to distinguish Alzheimer’s disease from healthy controls. Here we test whether immunosignatures correspond to clinical classifications of disease using samples from people with brain

Immunosignaturing shows promise as a general approach to diagnosis. It has been shown to detect immunological signs of infection early during the course of disease and to distinguish Alzheimer’s disease from healthy controls. Here we test whether immunosignatures correspond to clinical classifications of disease using samples from people with brain tumors. Blood samples from patients undergoing craniotomies for therapeutically naïve brain tumors with diagnoses of astrocytoma (23 samples), Glioblastoma multiforme (22 samples), mixed oligodendroglioma/astrocytoma (16 samples), oligodendroglioma (18 samples), and 34 otherwise healthy controls were tested by immunosignature. Because samples were taken prior to adjuvant therapy, they are unlikely to be perturbed by non-cancer related affects. The immunosignaturing platform distinguished not only brain cancer from controls, but also pathologically important features about the tumor including type, grade, and the presence or absence of O6-methyl-guanine-DNA methyltransferase methylation promoter (MGMT), an important biomarker that predicts response to temozolomide in Glioblastoma multiformae patients.

ContributorsHughes, Alexa (Author) / Cichacz, Zbigniew (Author) / Scheck, Adrienne (Author) / Coons, Stephen W. (Author) / Johnston, Stephen (Author) / Stafford, Phillip (Author) / Biodesign Institute (Contributor)
Created2012-07-16
128994-Thumbnail Image.png
Description

Background: The success of new sequencing technologies and informatic methods for identifying genes has made establishing gene product function a critical rate limiting step in progressing the molecular sciences. We present a method to functionally mine genomes for useful activities in vivo, using an unusual property of a member of the

Background: The success of new sequencing technologies and informatic methods for identifying genes has made establishing gene product function a critical rate limiting step in progressing the molecular sciences. We present a method to functionally mine genomes for useful activities in vivo, using an unusual property of a member of the poxvirus family to demonstrate this screening approach.

Results: The genome of Parapoxvirus ovis (Orf virus) was sequenced, annotated, and then used to PCR-amplify its open-reading-frames. Employing a cloning-independent protocol, a viral expression-library was rapidly built and arrayed into sub-library pools. These were directly delivered into mice as expressible cassettes and assayed for an immune-modulating activity associated with parapoxvirus infection. The product of the B2L gene, a homolog of vaccinia F13L, was identified as the factor eliciting immune cell accumulation at sites of skin inoculation. Administration of purified B2 protein also elicited immune cell accumulation activity, and additionally was found to serve as an adjuvant for antigen-specific responses. Co-delivery of the B2L gene with an influenza gene-vaccine significantly improved protection in mice. Furthermore, delivery of the B2L expression construct, without antigen, non-specifically reduced tumor growth in murine models of cancer.

Conclusion: A streamlined, functional approach to genome-wide screening of a biological activity in vivo is presented. Its application to screening in mice for an immune activity elicited by the pathogen genome of Parapoxvirus ovis yielded a novel immunomodulator. In this inverted discovery method, it was possible to identify the adjuvant responsible for a function of interest prior to a mechanistic study of the adjuvant. The non-specific immune activity of this modulator, B2, is similar to that associated with administration of inactivated particles to a host or to a live viral infection. Administration of B2 may provide the opportunity to significantly impact host immunity while being itself only weakly recognized. The functional genomics method used to pinpoint B2 within an ORFeome may be more broadly applicable to screening for other biological activities in an animal.

ContributorsMcGuire, Michael J. (Author) / Johnston, Stephen (Author) / Sykes, Kathryn (Author) / Biodesign Institute (Contributor)
Created2012-01-13
128958-Thumbnail Image.png
Description

Background: Immunosignaturing is a new peptide microarray based technology for profiling of humoral immune responses. Despite new challenges, immunosignaturing gives us the opportunity to explore new and fundamentally different research questions. In addition to classifying samples based on disease status, the complex patterns and latent factors underlying immunosignatures, which we attempt

Background: Immunosignaturing is a new peptide microarray based technology for profiling of humoral immune responses. Despite new challenges, immunosignaturing gives us the opportunity to explore new and fundamentally different research questions. In addition to classifying samples based on disease status, the complex patterns and latent factors underlying immunosignatures, which we attempt to model, may have a diverse range of applications.

Methods: We investigate the utility of a number of statistical methods to determine model performance and address challenges inherent in analyzing immunosignatures. Some of these methods include exploratory and confirmatory factor analyses, classical significance testing, structural equation and mixture modeling.

Results: We demonstrate an ability to classify samples based on disease status and show that immunosignaturing is a very promising technology for screening and presymptomatic screening of disease. In addition, we are able to model complex patterns and latent factors underlying immunosignatures. These latent factors may serve as biomarkers for disease and may play a key role in a bioinformatic method for antibody discovery.

Conclusion: Based on this research, we lay out an analytic framework illustrating how immunosignatures may be useful as a general method for screening and presymptomatic screening of disease as well as antibody discovery.

ContributorsBrown, Justin (Author) / Stafford, Phillip (Author) / Johnston, Stephen (Author) / Dinu, Valentin (Author) / College of Health Solutions (Contributor)
Created2011-08-19
129403-Thumbnail Image.png
Description

The Quadrangles Av-11 and Av-12 on Vesta are located at the northern rim of the giant Rheasilvia south polar impact basin. The primary geologic units in Av-11 and Av-12 include material from the Rheasilvia impact basin formation, smooth material and different types of impact crater structures (such as bimodal craters,

The Quadrangles Av-11 and Av-12 on Vesta are located at the northern rim of the giant Rheasilvia south polar impact basin. The primary geologic units in Av-11 and Av-12 include material from the Rheasilvia impact basin formation, smooth material and different types of impact crater structures (such as bimodal craters, dark and bright crater ray material and dark ejecta material). Av-11 and Av-12 exhibit almost the full range of mass wasting features observed on Vesta, such as slump blocks, spur-and-gully morphologies and landslides within craters. Processes of collapse, slope instability and seismically triggered events force material to slump down crater walls or scarps and produce landslides or rotational slump blocks. The spur-and-gully morphology that is known to form on Mars is also observed on Vesta; however, on Vesta this morphology formed under dry conditions.

ContributorsKrohn, K. (Author) / Jaumann, R. (Author) / Otto, K. (Author) / Hoogenboom, T. (Author) / Wagner, R. (Author) / Buczkowski, D. L. (Author) / Garry, B. (Author) / Williams, David (Author) / Yingst, R. A. (Author) / Scully, J. (Author) / De Sanctis, M. C. (Author) / Kneissl, T. (Author) / Schmedemann, N. (Author) / Kersten, E. (Author) / Stephan, K. (Author) / Matz, K-D. (Author) / Pieters, C. M. (Author) / Preusker, F. (Author) / Roatsch, T. (Author) / Schenk, P. (Author) / Russell, C. T. (Author) / Raymond, C. A. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-01