This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 41 - 50 of 67
Filtering by

Clear all filters

128531-Thumbnail Image.png
Description

We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can

We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices.

ContributorsAltmeyer, Sebastian (Author) / Do, Younghae (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-12-21
128524-Thumbnail Image.png
Description

We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation

We uncover an alternative mechanism for anomalous Hall effect. In particular, we investigate the magnetisation dynamics of an insulating ferromagnet (FM) deposited on the surface of a three-dimensional topological insulator (TI), subject to an external voltage. The spin-polarised current on the TI surface induces a spin-transfer torque on the magnetisation of the top FM while its dynamics can change the transmission probability of the surface electrons through the exchange coupling and hence the current. We find a host of nonlinear dynamical behaviors including multistability, chaos, and phase synchronisation. Strikingly, a dynamics mediated Hall-like current can arise, which exhibits a nontrivial dependence on the channel conductance. We develop a physical understanding of the mechanism that leads to the anomalous Hall effect. The nonlinear dynamical origin of the effect stipulates that a rich variety of final states exist, implying that the associated Hall current can be controlled to yield desirable behaviors. The phenomenon can find applications in Dirac-material based spintronics.

ContributorsWang, Guanglei (Author) / Xu, Hongya (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-01-28
129568-Thumbnail Image.png
Description

We develop a completely data-driven approach to reconstructing coupled neuronal networks that contain a small subset of chaotic neurons. Such chaotic elements can be the result of parameter shift in their individual dynamical systems and may lead to abnormal functions of the network. To accurately identify the chaotic neurons may

We develop a completely data-driven approach to reconstructing coupled neuronal networks that contain a small subset of chaotic neurons. Such chaotic elements can be the result of parameter shift in their individual dynamical systems and may lead to abnormal functions of the network. To accurately identify the chaotic neurons may thus be necessary and important, for example, applying appropriate controls to bring the network to a normal state. However, due to couplings among the nodes, the measured time series, even from non-chaotic neurons, would appear random, rendering inapplicable traditional nonlinear time-series analysis, such as the delay-coordinate embedding method, which yields information about the global dynamics of the entire network. Our method is based on compressive sensing. In particular, we demonstrate that identifying chaotic elements can be formulated as a general problem of reconstructing the nodal dynamical systems, network connections and all coupling functions, as well as their weights. The working and efficiency of the method are illustrated by using networks of non-identical FitzHugh–Nagumo neurons with randomly-distributed coupling weights.

ContributorsSu, Riqi (Author) / Lai, Ying-Cheng (Author) / Wang, Xiao (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-07-01
129561-Thumbnail Image.png
Description

Extreme events, a type of collective behavior in complex networked dynamical systems, often can have catastrophic consequences. To develop effective strategies to control extreme events is of fundamental importance and practical interest. Utilizing transportation dynamics on complex networks as a prototypical setting, we find that making the network “mobile” can

Extreme events, a type of collective behavior in complex networked dynamical systems, often can have catastrophic consequences. To develop effective strategies to control extreme events is of fundamental importance and practical interest. Utilizing transportation dynamics on complex networks as a prototypical setting, we find that making the network “mobile” can effectively suppress extreme events. A striking, resonance-like phenomenon is uncovered, where an optimal degree of mobility exists for which the probability of extreme events is minimized. We derive an analytic theory to understand the mechanism of control at a detailed and quantitative level, and validate the theory numerically. Implications of our finding to current areas such as cybersecurity are discussed.

ContributorsChen, Yu-Zhong (Author) / Huang, Zi-Gang (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-08-18
129548-Thumbnail Image.png
Description

Our ability to uncover complex network structure and dynamics from data is fundamental to understanding and controlling collective dynamics in complex systems. Despite recent progress in this area, reconstructing networks with stochastic dynamical processes from limited time series remains to be an outstanding problem. Here we develop a framework based

Our ability to uncover complex network structure and dynamics from data is fundamental to understanding and controlling collective dynamics in complex systems. Despite recent progress in this area, reconstructing networks with stochastic dynamical processes from limited time series remains to be an outstanding problem. Here we develop a framework based on compressed sensing to reconstruct complex networks on which stochastic spreading dynamics take place. We apply the methodology to a large number of model and real networks, finding that a full reconstruction of inhomogeneous interactions can be achieved from small amounts of polarized (binary) data, a virtue of compressed sensing. Further, we demonstrate that a hidden source that triggers the spreading process but is externally inaccessible can be ascertained and located with high confidence in the absence of direct routes of propagation from it. Our approach thus establishes a paradigm for tracing and controlling epidemic invasion and information diffusion in complex networked systems.

ContributorsShen, Zhesi (Author) / Wang, Wen-Xu (Author) / Fan, Ying (Author) / Di, Zengru (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-07-01
129059-Thumbnail Image.png
Description

Background: Peanut consumption favorably influences satiety. This study examined the acute effect of peanut versus grain bar preloads on postmeal satiety and glycemia in healthy adults and the long-term effect of these meal preloads on body mass in healthy overweight adults.

Methods: In the acute crossover trial (n = 15; 28.4 ± 2.9 y; 23.1 ± 0.9

Background: Peanut consumption favorably influences satiety. This study examined the acute effect of peanut versus grain bar preloads on postmeal satiety and glycemia in healthy adults and the long-term effect of these meal preloads on body mass in healthy overweight adults.

Methods: In the acute crossover trial (n = 15; 28.4 ± 2.9 y; 23.1 ± 0.9 kg/m2), the preload (isoenergetic peanut or grain bar with water, or water alone) was followed after 60 min with ingestion of a standardized glycemic test meal. Satiety and blood glucose were assessed immediately prior to the preload and to the test meal, and for two hours postmeal at 30-min intervals. In the parallel-arm, randomized trial (n = 44; 40.5 ± 1.6 y, 31.8 ± 0.9 kg/m2), the peanut or grain bar preload was consumed one hour prior to the evening meal for eight weeks. Body mass was measured at 2-week intervals, and secondary endpoints included blood hemoglobin A1c and energy intake as assessed by 3-d diet records collected at pre-trial and trial weeks 1 and 8.

Results: Satiety was elevated in the postprandial period following grain bar ingestion in comparison to peanut or water ingestion (p = 0.001, repeated-measures ANOVA). Blood glucose was elevated one hour after ingestion of the grain bar as compared to the peanut or water treatments; yet, total glycemia did not vary between treatments in the two hour postprandial period. In the 8-week trial, body mass was reduced for the grain bar versus peanut groups after eight weeks (−1.3 ± 0.4 kg versus −0.2 ± 0.3 kg, p = 0.033, analysis of covariance). Energy intake was reduced by 458 kcal/d in the first week of the trial for the grain bar group as compared to the peanut group (p = 0.118). Hemoglobin A1c changed significantly between groups during the trial (−0.25 ± 0.07% and −0.18 ± 0.12% for the grain bar and peanut groups respectively, p = 0.001).

Conclusions: Compared to an isoenergetic peanut preload, consumption of a grain bar preload one hour prior to a standardized meal significantly raised postmeal satiety. Moreover, consumption of the grain bar prior to the evening meal was associated with significant weight loss over time suggesting that glycemic carbohydrate ingestion prior to meals may be a weight management strategy.

ContributorsJohnston, Carol (Author) / Catherine, Trier (Author) / Fleming, Katie (Author) / College of Health Solutions (Contributor)
Created2013-03-27
129044-Thumbnail Image.png
Description

Background: Height is an important health assessment measure with many applications. In the medical practice and in research settings, height is typically measured with a stadiometer. Although lasers are commonly used by health professionals for measurement including facial imaging, corneal thickness, and limb length, it has not been utilized for

Background: Height is an important health assessment measure with many applications. In the medical practice and in research settings, height is typically measured with a stadiometer. Although lasers are commonly used by health professionals for measurement including facial imaging, corneal thickness, and limb length, it has not been utilized for measuring height. The purpose of this feasibility study was to examine the ease and accuracy of a laser device for measuring height in children and adults.

Findings: In immediate succession, participant height was measured in triplicate using a stadiometer followed by the laser device. Measurement error for the laser device was significantly higher than that for the stadiometer (0.35 and 0.20 cm respectively). However, the measurement techniques were highly correlated (r2 = 0.998 and 0.990 for the younger [<12 y, n = 25] and older [≥12 y, n = 100] participants respectively), and the estimated reliability between measurement techniques was 0.999 (ICC; 95 % CI: 0.998,1.000) and 0.995 (ICC; 95 % CI: 0.993,0.997) for the younger and older groups respectively. The average differences between the two styles of measurement (e.g., stadiometer minus laser) were significantly different from zero: +0.93 and +0.45 cm for the younger and older groups respectively.

Conclusions: These data demonstrate that laser technology can be adapted to measure height in children and adults. Although refinement is needed, the laser device for measuring height merits further development.

ContributorsMayol-Kreiser, Sandra (Author) / Garcia-Turner, Vanessa (Author) / Johnston, Carol (Author) / College of Health Solutions (Contributor)
Created2015-08-31
127961-Thumbnail Image.png
Description

As gesture interfaces become more main-stream, it is increasingly important to investigate the behavioral characteristics of these interactions – particularly in three-dimensional (3D) space. In this study, Fitts’ method was extended to such input technologies, and the applicability of Fitts’ law to gesture-based interactions was examined. The experiment included three

As gesture interfaces become more main-stream, it is increasingly important to investigate the behavioral characteristics of these interactions – particularly in three-dimensional (3D) space. In this study, Fitts’ method was extended to such input technologies, and the applicability of Fitts’ law to gesture-based interactions was examined. The experiment included three gesture-based input devices that utilize different techniques to capture user movement, and compared them to conventional input technologies like touchscreen and mouse. Participants completed a target-acquisition test and were instructed to move a cursor from a home location to a spherical target as quickly and accurately as possible. Three distances and three target sizes were tested six times in a randomized order for all input devices. A total of 81 participants completed all tasks. Movement time, error rate, and throughput were calculated for each input technology. Results showed that the mean movement time was highly correlated with the target's index of difficulty for all devices, providing evidence that Fitts’ law can be extended and applied to gesture-based devices. Throughputs were found to be significantly lower for the gesture-based devices compared to mouse and touchscreen, and as the index of difficulty increased, the movement time increased significantly more for these gesture technologies. Error counts were statistically higher for all gesture-based input technologies compared to mouse. In addition, error counts for all inputs were highly correlated with target width, but little impact was shown by movement distance. Overall, the findings suggest that gesture-based devices can be characterized by Fitts’ law in a similar fashion to conventional 1D or 2D devices.

ContributorsBurno, Rachael A. (Author) / Wu, Bing (Author) / Doherty, Rina (Author) / Colett, Hannah (Author) / Elnaggar, Rania (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2015-10-23
127936-Thumbnail Image.png
Description

Load associated fatigue cracking is one of the major distress types occurring in flexible pavements. Flexural bending beam fatigue laboratory test has been used for several decades and is considered an integral part of the Superpave advanced characterization procedure. One of the most significant solutions to sustain the fatigue life

Load associated fatigue cracking is one of the major distress types occurring in flexible pavements. Flexural bending beam fatigue laboratory test has been used for several decades and is considered an integral part of the Superpave advanced characterization procedure. One of the most significant solutions to sustain the fatigue life for an asphaltic mixture is to add sustainable materials such as rubber or polymers to the asphalt mixture. A laboratory testing program was performed on three gap-graded mixtures: unmodified, Asphalt Rubber (AR) and polymer-modified. Strain controlled fatigue tests were conducted according to the AASHTO T321 procedure. The results from the beam fatigue tests indicated that the AR and polymer-modified gap graded mixtures would have much longer fatigue lives compared to the reference (unmodified) mixture. In addition, a mechanistic analysis using 3D-Move software coupled with a cost-effectiveness analysis study based on the fatigue performance on the three mixtures were performed. Overall, the analysis showed that the AR and polymer-modified asphalt mixtures exhibited significantly higher cost-effectiveness compared to unmodified HMA mixture. Although AR and polymer-modification increases the cost of the material, the analysis showed that they are more cost effective than the unmodified mixture.

ContributorsSouliman, Mena I. (Author) / Mamlouk, Michael (Author) / Eifert, Annie (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2016-05-20
127935-Thumbnail Image.png
Description

The principles of a new project management model have been tested for the past 20 years. This project management model utilizes expertise instead of the traditional management, direction, and control (MDC). This new project management model is a leadership-based model instead of a management model. The practice of the new

The principles of a new project management model have been tested for the past 20 years. This project management model utilizes expertise instead of the traditional management, direction, and control (MDC). This new project management model is a leadership-based model instead of a management model. The practice of the new model requires a change in paradigm and project management structure. Some of the practices of this new paradigm include minimizing the flow of information and communications to and from the project manager [including meetings, emails and documents], eliminating technical communications, reducing client management, direction, and control of the vendor, and the hiring of vendors or personnel to do specific tasks. A vendors is hired only after they have clearly shown that they know what they are doing by showing past performance on similar projects, that they clearly understand how to create transparency to minimize risk that they do not control, and that they can clearly outline their project plan using a detailed milestone schedule including time, cost, and tasks all communicated in the language of metrics.

ContributorsRivera, Alfredo (Author) / Kashiwagi, Dean (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2016-05-20