This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 23
Filtering by

Clear all filters

129247-Thumbnail Image.png
Description

The City of Phoenix (Arizona, USA) developed a Tree and Shade Master Plan and a Cool Roofs initiative to ameliorate extreme heat during the summer months in their arid city. This study investigates the impact of the City's heat mitigation strategies on daytime microclimate for a pre-monsoon summer day under

The City of Phoenix (Arizona, USA) developed a Tree and Shade Master Plan and a Cool Roofs initiative to ameliorate extreme heat during the summer months in their arid city. This study investigates the impact of the City's heat mitigation strategies on daytime microclimate for a pre-monsoon summer day under current climate conditions and two climate change scenarios. We assessed the cooling effect of trees and cool roofs in a Phoenix residential neighborhood using the microclimate model ENVI-met. First, using xeric landscaping as a base, we created eight tree planting scenarios (from 0% canopy cover to 30% canopy cover) for the neighborhood to characterize the relationship between canopy cover and daytime cooling benefit of trees. In a second set of simulations, we ran ENVI-met for nine combined tree planting and landscaping scenarios (mesic, oasis, and xeric) with regular roofs and cool roofs under current climate conditions and two climate change projections. For each of the 54 scenarios, we compared average neighborhood mid-afternoon air temperatures and assessed the benefits of each heat mitigation measure under current and projected climate conditions. Findings suggest that the relationship between percent canopy cover and air temperature reduction is linear, with 0.14 °C cooling per percent increase in tree cover for the neighborhood under investigation. An increase in tree canopy cover from the current 10% to a targeted 25% resulted in an average daytime cooling benefit of up to 2.0 °C in residential neighborhoods at the local scale. Cool roofs reduced neighborhood air temperatures by 0.3 °C when implemented on residential homes. The results from this city-specific mitigation project will inform messaging campaigns aimed at engaging the city decision makers, industry, and the public in the green building and urban forestry initiatives.

ContributorsMiddel, Ariane (Author) / Chhetri, Nalini (Author) / Quay, Ray (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-11-30
129193-Thumbnail Image.png
Description

Plasmonic and metamaterial based nano/micro-structured materials enable spectrally selective resonant absorption, where the resonant bandwidth and absorption intensity can be engineered by controlling the size and geometry of nanostructures. Here, we demonstrate a simple, lithography-free approach for obtaining a resonant and dynamically tunable broadband absorber based on vanadium dioxide (VO2)

Plasmonic and metamaterial based nano/micro-structured materials enable spectrally selective resonant absorption, where the resonant bandwidth and absorption intensity can be engineered by controlling the size and geometry of nanostructures. Here, we demonstrate a simple, lithography-free approach for obtaining a resonant and dynamically tunable broadband absorber based on vanadium dioxide (VO2) phase transition. Using planar layered thin film structures, where top layer is chosen to be an ultrathin (20 nm) VO2 film, we demonstrate broadband IR light absorption tuning (from similar to 90% to similar to 30% in measured absorption) over the entire mid-wavelength infrared spectrum. Our numerical and experimental results indicate that the bandwidth of the absorption bands can be controlled by changing the dielectric spacer layer thickness. Broadband tunable absorbers can find applications in absorption filters, thermal emitters, thermophotovoltaics, and sensing.

ContributorsKocer, Hasan (Author) / Butun, Serkan (Author) / Palacios, Edgar (Author) / Liu, Zizhuo (Author) / Tongay, Sefaattin (Author) / Fu, Deyi (Author) / Wang, Kevin (Author) / Wu, Junqiao (Author) / Aydin, Koray (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-08-21
128923-Thumbnail Image.png
Description

The unicellular microalga Haematococcus pluvialis has emerged as a promising biomass feedstock for the ketocarotenoid astaxanthin and neutral lipid triacylglycerol. Motile flagellates, resting palmella cells, and cysts are the major life cycle stages of H. pluvialis. Fast-growing motile cells are usually used to induce astaxanthin and triacylglycerol biosynthesis under stress

The unicellular microalga Haematococcus pluvialis has emerged as a promising biomass feedstock for the ketocarotenoid astaxanthin and neutral lipid triacylglycerol. Motile flagellates, resting palmella cells, and cysts are the major life cycle stages of H. pluvialis. Fast-growing motile cells are usually used to induce astaxanthin and triacylglycerol biosynthesis under stress conditions (high light or nutrient starvation); however, productivity of biomass and bioproducts are compromised due to the susceptibility of motile cells to stress. This study revealed that the Photosystem II (PSII) reaction center D1 protein, the manganese-stabilizing protein PsbO, and several major membrane glycerolipids (particularly for chloroplast membrane lipids monogalactosyldiacylglycerol and phosphatidylglycerol), decreased dramatically in motile cells under high light (HL). In contrast, palmella cells, which are transformed from motile cells after an extended period of time under favorable growth conditions, have developed multiple protective mechanisms - including reduction in chloroplast membrane lipids content, downplay of linear photosynthetic electron transport, and activating nonphotochemical quenching mechanisms - while accumulating triacylglycerol. Consequently, the membrane lipids and PSII proteins (D1 and PsbO) remained relatively stable in palmella cells subjected to HL. Introducing palmella instead of motile cells to stress conditions may greatly increase astaxanthin and lipid production in H. pluvialis culture.

ContributorsWang, Baobei (Author) / Zhang, Zhen (Author) / Hu, Qiang (Author) / Sommerfeld, Milton (Author) / Lu, Yinghua (Author) / Han, Danxiang (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-09-15
Description

Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade and tree shade on thermal comfort through meteorological observations and field surveys at a pedestrian mall on Arizona State University's Tempe campus. During the course of 1

Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade and tree shade on thermal comfort through meteorological observations and field surveys at a pedestrian mall on Arizona State University's Tempe campus. During the course of 1 year, on selected clear calm days representative of each season, we conducted hourly meteorological transects from 7:00 a.m. to 6:00 p.m. and surveyed 1284 people about their thermal perception, comfort, and preferences. Shade lowered thermal sensation votes by approximately 1 point on a semantic differential 9-point scale, increasing thermal comfort in all seasons except winter. Shade type (tree or solar canopy) did not significantly impact perceived comfort, suggesting that artificial and natural shades are equally efficient in hot dry climates. Globe temperature explained 51 % of the variance in thermal sensation votes and was the only statistically significant meteorological predictor. Important non-meteorological factors included adaptation, thermal comfort vote, thermal preference, gender, season, and time of day. A regression of subjective thermal sensation on physiological equivalent temperature yielded a neutral temperature of 28.6 °C. The acceptable comfort range was 19.1 °C-38.1 °C with a preferred temperature of 20.8 °C. Respondents exposed to above neutral temperature felt more comfortable if they had been in air-conditioning 5 min prior to the survey, indicating a lagged response to outdoor conditions. Our study highlights the importance of active solar access management in hot urban areas to reduce thermal stress.

ContributorsMiddel, Ariane (Author) / Selover, Nancy (Author) / Hagen, Bjorn (Author) / Chhetri, Nalini (Author)
Created2015-04-13
Description

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the three-dimensional microclimate model ENVI-met. The model was validated using weather observations from the North Desert Village (NDV) landscape experiment, located on the Arizona State University's Polytechnic campus. The NDV is an ideal site to determine the model's input parameters, since it is a controlled environment recreating three prevailing residential landscape types in the Phoenix metropolitan area (mesic, oasis, and xeric). After validation, we designed five neighborhoods with different urban forms that represent a realistic cross-section of typical residential neighborhoods in Phoenix. The scenarios follow the Local Climate Zone (LCZ) classification scheme after Stewart and Oke. We then combined the neighborhoods with three landscape designs and, using ENVI-met, simulated microclimate conditions for these neighborhoods for a typical summer day. Results were analyzed in terms of mid-afternoon air temperature distribution and variation, ventilation, surface temperatures, and shading. Findings show that advection is important for the distribution of within-design temperatures and that spatial differences in cooling are strongly related to solar radiation and local shading patterns. In mid-afternoon, dense urban forms can create local cool islands. Our approach suggests that the LCZ concept is useful for planning and design purposes.

ContributorsMiddel, Ariane (Author) / Hab, Kathrin (Author) / Brazel, Anthony J. (Author) / Martin, Chris A. (Author) / Guhathakurta, Subhrajit (Author)
Created2014-02
128945-Thumbnail Image.png
Description

Summer daytime cooling efficiency of various land cover is investigated for the urban core of Phoenix, Arizona, using the Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). We examined the urban energy balance for 2 summer days in 2005 to analyze the daytime cooling-water use tradeoff and the timing of sensible heat

Summer daytime cooling efficiency of various land cover is investigated for the urban core of Phoenix, Arizona, using the Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). We examined the urban energy balance for 2 summer days in 2005 to analyze the daytime cooling-water use tradeoff and the timing of sensible heat reversal at night. The plausibility of the LUMPS model results was tested using remotely sensed surface temperatures from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery and reference evapotranspiration values from a meteorological station. Cooling efficiency was derived from sensible and latent heat flux differences. The time when the sensible heat flux turns negative (sensible heat flux transition) was calculated from LUMPS simulated hourly fluxes. Results indicate that the time when the sensible heat flux changes direction at night is strongly influenced by the heat storage capacity of different land cover types and by the amount of vegetation. Higher heat storage delayed the transition up to 3 h in the study area, while vegetation expedited the sensible heat reversal by 2 h. Cooling efficiency index results suggest that overall, the Phoenix urban core is slightly more efficient at cooling than the desert, but efficiencies do not increase much with wet fractions higher than 20%. Industrial sites with high impervious surface cover and low wet fraction have negative cooling efficiencies. Findings indicate that drier neighborhoods with heterogeneous land uses are the most efficient landscapes in balancing cooling and water use in Phoenix. However, further factors such as energy use and human vulnerability to extreme heat have to be considered in the cooling-water use tradeoff, especially under the uncertainties of future climate change.

ContributorsMiddel, Ariane (Author) / Brazel, Anthony J. (Author) / Kaplan, Shai (Author) / Myint, Soe W. (Author)
Created2012-08-12
128890-Thumbnail Image.png
Description

The unicellular green microalga Desmodesmus sp. S1 can produce more than 50% total lipid of cell dry weight under high light and nitrogen-limitation conditions. After irradiation by heavy 12C6+ ion beam of 10, 30, 60, 90 or 120 Gy, followed by screening of resulting mutants on 24-well microplates, more than

The unicellular green microalga Desmodesmus sp. S1 can produce more than 50% total lipid of cell dry weight under high light and nitrogen-limitation conditions. After irradiation by heavy 12C6+ ion beam of 10, 30, 60, 90 or 120 Gy, followed by screening of resulting mutants on 24-well microplates, more than 500 mutants were obtained. One of those, named D90G-19, exhibited lipid productivity of 0.298 g L-1⋅d-1, 20.6% higher than wild type, likely owing to an improved maximum quantum efficiency (Fv/Fm) of photosynthesis under stress. This work demonstrated that heavy-ion irradiation combined with high-throughput screening is an effective means for trait improvement. The resulting mutant D90G-19 may be used for enhanced lipid production.

ContributorsHu, Guangrong (Author) / Fan, Yong (Author) / Zhang, Lei (Author) / Yuan, Cheng (Author) / Wang, Jufang (Author) / Hu, Qiang (Author) / Li, Fuli (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2013-04-09
128161-Thumbnail Image.png
Description

We quantified the spatio-temporal patterns of land cover/land use (LCLU) change to document and evaluate the daytime surface urban heat island (SUHI) for five hot subtropical desert cities (Beer Sheva, Israel; Hotan, China; Jodhpur, India; Kharga, Egypt; and Las Vegas, NV, USA). Sequential Landsat images were acquired and classified into

We quantified the spatio-temporal patterns of land cover/land use (LCLU) change to document and evaluate the daytime surface urban heat island (SUHI) for five hot subtropical desert cities (Beer Sheva, Israel; Hotan, China; Jodhpur, India; Kharga, Egypt; and Las Vegas, NV, USA). Sequential Landsat images were acquired and classified into the USGS 24-category Land Use Categories using object-based image analysis with an overall accuracy of 80% to 95.5%. We estimated the land surface temperature (LST) of all available Landsat data from June to August for years 1990, 2000, and 2010 and computed the urban-rural difference in the average LST and Normalized Difference Vegetation Index (NDVI) for each city. Leveraging non-parametric statistical analysis, we also investigated the impacts of city size and population on the urban-rural difference in the summer daytime LST and NDVI. Urban expansion is observed for all five cities, but the urbanization pattern varies widely from city to city. A negative SUHI effect or an oasis effect exists for all the cities across all three years, and the amplitude of the oasis effect tends to increase as the urban-rural NDVI difference increases. A strong oasis effect is observed for Hotan and Kharga with evidently larger NDVI difference than the other cities. Larger cities tend to have a weaker cooling effect while a negative association is identified between NDVI difference and population. Understanding the daytime oasis effect of desert cities is vital for sustainable urban planning and the design of adaptive management, providing valuable guidelines to foster smart desert cities in an era of climate variability, uncertainty, and change.

ContributorsFan, Chao (Author) / Myint, Soe (Author) / Kaplan, Shai (Author) / Middel, Ariane (Author) / Zheng, Baojuan (Author) / Rahman, Atiqur (Author) / Huang, Huei-Ping (Author) / Brazel, Anthony J. (Author) / Blumberg, Dan G. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-06-30
128185-Thumbnail Image.png
Description

The Sky View Factor (SVF) is a dimension-reduced representation of urban form and one of the major variables in radiation models that estimate outdoor thermal comfort. Common ways of retrieving SVFs in urban environments include capturing fisheye photographs or creating a digital 3D city or elevation model of the environment.

The Sky View Factor (SVF) is a dimension-reduced representation of urban form and one of the major variables in radiation models that estimate outdoor thermal comfort. Common ways of retrieving SVFs in urban environments include capturing fisheye photographs or creating a digital 3D city or elevation model of the environment. Such techniques have previously been limited due to a lack of imagery or lack of full scale detailed models of urban areas. We developed a web based tool that automatically generates synthetic hemispherical fisheye views from Google Earth at arbitrary spatial resolution and calculates the corresponding SVFs through equiangular projection. SVF results were validated using Google Maps Street View and compared to results from other SVF calculation tools. We generated 5-meter resolution SVF maps for two neighborhoods in Phoenix, Arizona to illustrate fine-scale variations of intra-urban horizon limitations due to urban form and vegetation. To demonstrate the utility of our synthetic fisheye approach for heat stress applications, we automated a radiation model to generate outdoor thermal comfort maps for Arizona State University’s Tempe campus for a hot summer day using synthetic fisheye photos and on-site meteorological data. Model output was tested against mobile transect measurements of the six-directional radiant flux density. Based on the thermal comfort maps, we implemented a pedestrian routing algorithm that is optimized for distance and thermal comfort preferences. Our synthetic fisheye approach can help planners assess urban design and tree planting strategies to maximize thermal comfort outcomes and can support heat hazard mitigation in urban areas.

ContributorsMiddel, Ariane (Author) / Lukasczyk, Jonas (Author) / Maciejewski, Ross (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-03-27
129634-Thumbnail Image.png
Description

Background: Microalgae are promising feedstock for production of lipids, sugars, bioactive compounds and in particular biofuels, yet development of sensitive and reliable phylotyping strategies for microalgae has been hindered by the paucity of phylogenetically closely-related finished genomes.

Results: Using the oleaginous eustigmatophyte Nannochloropsis as a model, we assessed current intragenus phylotyping

Background: Microalgae are promising feedstock for production of lipids, sugars, bioactive compounds and in particular biofuels, yet development of sensitive and reliable phylotyping strategies for microalgae has been hindered by the paucity of phylogenetically closely-related finished genomes.

Results: Using the oleaginous eustigmatophyte Nannochloropsis as a model, we assessed current intragenus phylotyping strategies by producing the complete plastid (pt) and mitochondrial (mt) genomes of seven strains from six Nannochloropsis species. Genes on the pt and mt genomes have been highly conserved in content, size and order, strongly negatively selected and evolving at a rate 33% and 66% of nuclear genomes respectively. Pt genome diversification was driven by asymmetric evolution of two inverted repeats (IRa and IRb): psbV and clpC in IRb are highly conserved whereas their counterparts in IRa exhibit three lineage-associated types of structural polymorphism via duplication or disruption of whole or partial genes. In the mt genomes, however, a single evolution hotspot varies in copy-number of a 3.5 Kb-long, cox1-harboring repeat. The organelle markers (e.g., cox1, cox2, psbA, rbcL and rrn16_mt) and nuclear markers (e.g., ITS2 and 18S) that are widely used for phylogenetic analysis obtained a divergent phylogeny for the seven strains, largely due to low SNP density. A new strategy for intragenus phylotyping of microalgae was thus proposed that includes (i) twelve sequence markers that are of higher sensitivity than ITS2 for interspecies phylogenetic analysis, (ii) multi-locus sequence typing based on rps11_mt-nad4, rps3_mt and cox2-rrn16_mt for intraspecies phylogenetic reconstruction and (iii) several SSR loci for identification of strains within a given species.

Conclusion: This first comprehensive dataset of organelle genomes for a microalgal genus enabled exhaustive assessment and searches of all candidate phylogenetic markers on the organelle genomes. A new strategy for intragenus phylotyping of microalgae was proposed which might be generally applicable to other microalgal genera and should serve as a valuable tool in the expanding algal biotechnology industry.

ContributorsWei, Li (Author) / Xin, Yi (Author) / Wang, Dongmei (Author) / Jing, Xiaoyan (Author) / Zhou, Qian (Author) / Su, Xiaoquan (Author) / Jia, Jing (Author) / Ning, Kang (Author) / Chen, Feng (Author) / Hu, Qiang (Author) / Xu, Jian (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2013-08-05