This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

169286-Thumbnail Image.png
Description

During much of 2009 and 2010, the alternative energy marketplace has been in a state of unpredictable change. The financial landscape is uncertain and profits are slim. Many companies are wondering if the journey to find alternative means for energy production is worth the investment. Wind, hydro and solar projects

During much of 2009 and 2010, the alternative energy marketplace has been in a state of unpredictable change. The financial landscape is uncertain and profits are slim. Many companies are wondering if the journey to find alternative means for energy production is worth the investment. Wind, hydro and solar projects are all struggling to make ends meet in an economic landscape that predicts success but presents challenges. Strong, lean and agile companies seem to be able to maintain a slim competitive advantage afloat, while larger, slower companies are drowning in a myriad of intricate supply chains and non-existent credit. This paper evaluates innovation opportunities for alternative energy companies, with a focus on large scale, highly integrated solar providers.

ContributorsRaica, Matt (Author) / Stebbins, Kyle (Author) / Urbanowicz, Joel (Author) / Walker, Eric H (Author)
Created2011-04-15
169359-Thumbnail Image.png
Description

In-process laser heating technique delivers a cost-efficient way to improve mechanical and geometrical properties to nearly isotropic and extremely smooth, respectively. The technique involves the incorperation of a solid-state laser into a commercial off-the-shelf 3D printer, mechanical system to allow controllable laser allumination on desired surfaces, and a gcode postprocesser

In-process laser heating technique delivers a cost-efficient way to improve mechanical and geometrical properties to nearly isotropic and extremely smooth, respectively. The technique involves the incorperation of a solid-state laser into a commercial off-the-shelf 3D printer, mechanical system to allow controllable laser allumination on desired surfaces, and a gcode postprocesser to proper control of the mechanical system. This process uses laser for local heating, to enhance mass transfer between boundaries or to enhance surface reflow to smooth surface irregularity, to improve mechanical and geometrical properties. Only less than 3 W of laser power (CO2 laser) was used for high temperature material like PEEK and Ultem; less than 1 W (808nm laser) was found to be sufficient for achieving optimal properties for PLA. This technique has the potential for after-market integration into most commercial FFF 3D printers to achieved nearly isotropic and smooth 3D printed objects with various thermoplastic polymers.

ContributorsHan, Pu (Author) / Zhang, Sihan (Author) / Hsu, Keng H. (Author)
Created2022-06-13