This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

Rethinking Conceptual Art
Description

This book review considers three books on Conceptual Art that appeared in this year, by Anne Rorimer, Michael Newman and Jon Bird, and Rosalind Krauss. In 2011 this review was distinguished as one of the most consulted in the history of caa.reviews; see Patricia Kelly, “2002,” at: http://www.caareviews.org/centennial/2002

ContributorsMesch, Claudia (Author)
Created2002
Racing Berlin: the Games of Run Lola Run
Description

This is a film review of the German film Run Lola Run, released in 1988.

ContributorsMesch, Claudia (Author)
Created2000
169359-Thumbnail Image.png
Description

In-process laser heating technique delivers a cost-efficient way to improve mechanical and geometrical properties to nearly isotropic and extremely smooth, respectively. The technique involves the incorperation of a solid-state laser into a commercial off-the-shelf 3D printer, mechanical system to allow controllable laser allumination on desired surfaces, and a gcode postprocesser

In-process laser heating technique delivers a cost-efficient way to improve mechanical and geometrical properties to nearly isotropic and extremely smooth, respectively. The technique involves the incorperation of a solid-state laser into a commercial off-the-shelf 3D printer, mechanical system to allow controllable laser allumination on desired surfaces, and a gcode postprocesser to proper control of the mechanical system. This process uses laser for local heating, to enhance mass transfer between boundaries or to enhance surface reflow to smooth surface irregularity, to improve mechanical and geometrical properties. Only less than 3 W of laser power (CO2 laser) was used for high temperature material like PEEK and Ultem; less than 1 W (808nm laser) was found to be sufficient for achieving optimal properties for PLA. This technique has the potential for after-market integration into most commercial FFF 3D printers to achieved nearly isotropic and smooth 3D printed objects with various thermoplastic polymers.

ContributorsHan, Pu (Author) / Zhang, Sihan (Author) / Hsu, Keng H. (Author)
Created2022-06-13