This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 43
Filtering by

Clear all filters

129256-Thumbnail Image.png
Description

Studies on urban heat island (UHI) have been more than a century after the phenomenon was first discovered in the early 1800s. UHI emerges as the source of many urban environmental problems and exacerbates the living environment in cities. Under the challenges of increasing urbanization and future climate changes, there

Studies on urban heat island (UHI) have been more than a century after the phenomenon was first discovered in the early 1800s. UHI emerges as the source of many urban environmental problems and exacerbates the living environment in cities. Under the challenges of increasing urbanization and future climate changes, there is a pressing need for sustainable adaptation/mitigation strategies for UHI effects, one popular option being the use of reflective materials. While it is introduced as an effective method to reduce temperature and energy consumption in cities, its impacts on environmental sustainability and large-scale non-local effect are inadequately explored. This paper provides a synthetic overview of potential environmental impacts of reflective materials at a variety of scales, ranging from energy load on a single building to regional hydroclimate. The review shows that mitigation potential of reflective materials depends on a set of factors, including building characteristics, urban environment, meteorological and geographical conditions, to name a few. Precaution needs to be exercised by city planners and policy makers for large-scale deployment of reflective materials before their environmental impacts, especially on regional hydroclimates, are better understood. In general, it is recommended that optimal strategy for UHI needs to be determined on a city-by-city basis, rather than adopting a “one-solution-fits-all” strategy.

ContributorsYang, Jiachuan (Author) / Wang, Zhi-Hua (Author) / Kaloush, Kamil (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-07-01
129257-Thumbnail Image.png
Description

Land surface energy balance in a built environment is widely modelled using urban canopy models with representation of building arrays as big street canyons. Modification of this simplified geometric representation, however, leads to challenging numerical difficulties in improving physical parameterization schemes that are deterministic in nature. In this paper, we

Land surface energy balance in a built environment is widely modelled using urban canopy models with representation of building arrays as big street canyons. Modification of this simplified geometric representation, however, leads to challenging numerical difficulties in improving physical parameterization schemes that are deterministic in nature. In this paper, we develop a stochastic algorithm to estimate view factors between canyon facets in the presence of shade trees based on Monte Carlo simulation, where an analytical formulation is inhibited by the complex geometry. The model is validated against analytical solutions of benchmark radiative problems as well as field measurements in real street canyons. In conjunction with the matrix method resolving infinite number of reflections, the proposed model is capable of predicting the radiative exchange inside the street canyon with good accuracy. Modeling of transient evolution of thermal filed inside the street canyon using the proposed method demonstrate the potential of shade trees in mitigating canyon surface temperatures as well as saving of building energy use. This new numerical framework also deepens our insight into the fundamental physics of radiative heat transfer and surface energy balance for urban climate modeling.

ContributorsWang, Zhi-Hua (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-12-01
128691-Thumbnail Image.png
Description

Although emerging evidence indicates that deep-sea water contains an untapped reservoir of high metabolic and genetic diversity, this realm has not been studied well compared with surface sea water. The study provided the first integrated meta-genomic and -transcriptomic analysis of the microbial communities in deep-sea water of North Pacific Ocean.

Although emerging evidence indicates that deep-sea water contains an untapped reservoir of high metabolic and genetic diversity, this realm has not been studied well compared with surface sea water. The study provided the first integrated meta-genomic and -transcriptomic analysis of the microbial communities in deep-sea water of North Pacific Ocean. DNA/RNA amplifications and simultaneous metagenomic and metatranscriptomic analyses were employed to discover information concerning deep-sea microbial communities from four different deep-sea sites ranging from the mesopelagic to pelagic ocean. Within the prokaryotic community, bacteria is absolutely dominant (~90%) over archaea in both metagenomic and metatranscriptomic data pools. The emergence of archaeal phyla Crenarchaeota, Euryarchaeota, Thaumarchaeota, bacterial phyla Actinobacteria, Firmicutes, sub-phyla Betaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria, and the decrease of bacterial phyla Bacteroidetes and Alphaproteobacteria are the main composition changes of prokaryotic communities in the deep-sea water, when compared with the reference Global Ocean Sampling Expedition (GOS) surface water. Photosynthetic Cyanobacteria exist in all four metagenomic libraries and two metatranscriptomic libraries. In Eukaryota community, decreased abundance of fungi and algae in deep sea was observed. RNA/DNA ratio was employed as an index to show metabolic activity strength of microbes in deep sea. Functional analysis indicated that deep-sea microbes are leading a defensive lifestyle.

ContributorsWu, Jieying (Author) / Gao, Weimin (Author) / Johnson, Roger (Author) / Zhang, Weiwen (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2013-10-11
129002-Thumbnail Image.png
Description

Background: The use of culture-independent nucleic acid techniques, such as ribosomal RNA gene cloning library analysis, has unveiled the tremendous microbial diversity that exists in natural environments. In sharp contrast to this great achievement is the current difficulty in cultivating the majority of bacterial species or phylotypes revealed by molecular approaches.

Background: The use of culture-independent nucleic acid techniques, such as ribosomal RNA gene cloning library analysis, has unveiled the tremendous microbial diversity that exists in natural environments. In sharp contrast to this great achievement is the current difficulty in cultivating the majority of bacterial species or phylotypes revealed by molecular approaches. Although recent new technologies such as metagenomics and metatranscriptomics can provide more functionality information about the microbial communities, it is still important to develop the capacity to isolate and cultivate individual microbial species or strains in order to gain a better understanding of microbial physiology and to apply isolates for various biotechnological applications.

Results: We have developed a new system to cultivate bacteria in an array of droplets. The key component of the system is the microbe observation and cultivation array (MOCA), which consists of a Petri dish that contains an array of droplets as cultivation chambers. MOCA exploits the dominance of surface tension in small amounts of liquid to spontaneously trap cells in well-defined droplets on hydrophilic patterns. During cultivation, the growth of the bacterial cells across the droplet array can be monitored using an automated microscope, which can produce a real-time record of the growth. When bacterial cells grow to a visible microcolony level in the system, they can be transferred using a micropipette for further cultivation or analysis.

Conclusions: MOCA is a flexible system that is easy to set up, and provides the sensitivity to monitor growth of single bacterial cells. It is a cost-efficient technical platform for bioassay screening and for cultivation and isolation of bacteria from natural environments.

ContributorsGao, Weimin (Author) / Navarroli, Dena (Author) / Naimark, Jared (Author) / Zhang, Weiwen (Author) / Chao, Shih-hui (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2013-01-09
129070-Thumbnail Image.png
Description

Background: Heterogeneity within cell populations is relevant to the onset and progression of disease, as well as development and maintenance of homeostasis. Analysis and understanding of the roles of heterogeneity in biological systems require methods and technologies that are capable of single cell resolution. Single cell gene expression analysis by RT-qPCR

Background: Heterogeneity within cell populations is relevant to the onset and progression of disease, as well as development and maintenance of homeostasis. Analysis and understanding of the roles of heterogeneity in biological systems require methods and technologies that are capable of single cell resolution. Single cell gene expression analysis by RT-qPCR is an established technique for identifying transcriptomic heterogeneity in cellular populations, but it generally requires specialized equipment or tedious manipulations for cell isolation.

Results: We describe the optimization of a simple, inexpensive and rapid pipeline which includes isolation and culture of live single cells as well as fluorescence microscopy and gene expression analysis of the same single cells by RT-qPCR. We characterize the efficiency of single cell isolation and demonstrate our method by identifying single GFP-expressing cells from a mixed population of GFP-positive and negative cells by correlating fluorescence microscopy and RT-qPCR.

Conclusions: Single cell gene expression analysis by RT-qPCR is a convenient means for investigating cellular heterogeneity, but is most useful when correlating observations with additional measurements. We demonstrate a convenient and simple pipeline for multiplexing single cell RT-qPCR with fluorescence microscopy which is adaptable to other molecular analyses.

ContributorsYaron, Jordan (Author) / Ziegler, Colleen (Author) / Tran, Thai (Author) / Glenn, Honor (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2014-05-08
128903-Thumbnail Image.png
Description

Core-shell microgels containing sensors/dyes in a matrix were fabricated by two-stage free radical precipitation polymerization method for ratiometric sensing/imaging. The microgels composing of poly(N-isopropylacrylamide) (PNIPAm) shell exhibits a low critical solution temperature (LCST), underwent an entropically driven transition from a swollen state to a deswollen state, which exhibit a hydrodynamic

Core-shell microgels containing sensors/dyes in a matrix were fabricated by two-stage free radical precipitation polymerization method for ratiometric sensing/imaging. The microgels composing of poly(N-isopropylacrylamide) (PNIPAm) shell exhibits a low critical solution temperature (LCST), underwent an entropically driven transition from a swollen state to a deswollen state, which exhibit a hydrodynamic radius of ∼450 nm at 25°C (in vitro) and ∼190 nm at 37°C (in vivo). The microgel’s ability of escaping from lysosome into cytosol makes the microgel be a potential candidate for cytosolic delivery of sensors/probes. Non-invasive imaging/sensing in Antigen-presenting cells (APCs) was feasible by monitoring the changes of fluorescence intensity ratios. Thus, these biocompatible microgels-based imaging/sensing agents may be expected to expand current molecular imaging/sensing techniques into methods applicable to studies in vivo, which could further drive APC-based treatments.

ContributorsZhou, Xianfeng (Author) / Su, Fengyu (Author) / Tian, Yanqing (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2014-02-04
128770-Thumbnail Image.png
Description

Urban environmental measurements and observational statistics should reflect the properties generated over an adjacent area of adequate length where homogeneity is usually assumed. The determination of this characteristic source area that gives sufficient representation of the horizontal coverage of a sensing instrument or the fetch of transported quantities is of

Urban environmental measurements and observational statistics should reflect the properties generated over an adjacent area of adequate length where homogeneity is usually assumed. The determination of this characteristic source area that gives sufficient representation of the horizontal coverage of a sensing instrument or the fetch of transported quantities is of critical importance to guide the design and implementation of urban landscape planning strategies. In this study, we aim to unify two different methods for estimating source areas, viz. the statistical correlation method commonly used by geographers for landscape fragmentation and the mechanistic footprint model by meteorologists for atmospheric measurements. Good agreement was found in the intercomparison of the estimate of source areas by the two methods, based on 2-m air temperature measurement collected using a network of weather stations. The results can be extended to shed new lights on urban planning strategies, such as the use of urban vegetation for heat mitigation. In general, a sizable patch of landscape is required in order to play an effective role in regulating the local environment, proportional to the height at which stakeholders’ interest is mainly concerned.

ContributorsWang, Zhi-Hua (Author) / Fan, Chao (Author) / Myint, Soe (Author) / Wang, Chenghao (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-11-10
128771-Thumbnail Image.png
Description

Cellular heterogeneity plays a pivotal role in a variety of functional processes in vivo including carcinogenesis. However, our knowledge about cell-to-cell diversity and how differences in individual cells manifest in alterations at the population level remains very limited mainly due to the lack of appropriate tools enabling studies at the

Cellular heterogeneity plays a pivotal role in a variety of functional processes in vivo including carcinogenesis. However, our knowledge about cell-to-cell diversity and how differences in individual cells manifest in alterations at the population level remains very limited mainly due to the lack of appropriate tools enabling studies at the single-cell level. We present a study on changes in cellular heterogeneity in the context of pre-malignant progression in response to hypoxic stress. Utilizing pre-malignant progression of Barrett’s esophagus (BE) as a disease model system we studied molecular mechanisms underlying the progression from metaplastic to dysplastic (pre-cancerous) stage. We used newly developed methods enabling measurements of cell-to-cell differences in copy numbers of mitochondrial DNA, expression levels of a set of mitochondrial and nuclear genes involved in hypoxia response pathways, and mitochondrial membrane potential. In contrast to bulk cell studies reported earlier, our study shows significant differences between metaplastic and dysplastic BE cells in both average values and single-cell parameter distributions of mtDNA copy numbers, mitochondrial function, and mRNA expression levels of studied genes. Based on single-cell data analysis, we propose that mitochondria may be one of the key factors in pre-malignant progression in BE.

ContributorsWang, Jiangxin (Author) / Shi, Xu (Author) / Johnson, Roger (Author) / Kelbauskas, Laimonas (Author) / Zhang, Weiwen (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2013-10-08
128114-Thumbnail Image.png
Description

The net storage heat flux (ΔQ[subscript S]) is important in the urban surface energy balance (SEB) but its determination remains a significant challenge. The hysteresis pattern of the diurnal relation between the ΔQ[subscript S] and net all-wave radiation (Q[superscript ∗]) has been captured in the Objective Hysteresis Model (OHM) parameterization

The net storage heat flux (ΔQ[subscript S]) is important in the urban surface energy balance (SEB) but its determination remains a significant challenge. The hysteresis pattern of the diurnal relation between the ΔQ[subscript S] and net all-wave radiation (Q[superscript ∗]) has been captured in the Objective Hysteresis Model (OHM) parameterization of ΔQ[subscript S]. Although successfully used in urban areas, the limited availability of coefficients for OHM hampers its application. To facilitate use, and enhance physical interpretations of the OHM coefficients, an analytical solution of the one-dimensional advection–diffusion equation of coupled heat and liquid water transport in conjunction with the SEB is conducted, allowing development of AnOHM (Analytical Objective Hysteresis Model). A sensitivity test of AnOHM to surface properties and hydrometeorological forcing is presented using a stochastic approach (subset simulation). The sensitivity test suggests that the albedo, Bowen ratio and bulk transfer coefficient, solar radiation and wind speed are most critical. AnOHM, driven by local meteorological conditions at five sites with different land use, is shown to simulate the ΔQ[subscript S] flux well (RMSE values of ∼ 30 W m[superscript −2]). The intra-annual dynamics of OHM coefficients are explored. AnOHM offers significant potential to enhance modelling of the surface energy balance over a wider range of conditions and land covers.

ContributorsSun, Ting (Author) / Wang, Zhi-Hua (Author) / Oechel, Walter C. (Author) / Grimmond, Sue (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2017-07-27
128276-Thumbnail Image.png
Description

Urban land–atmosphere interactions can be captured by numerical modeling framework with coupled land surface and atmospheric processes, while the model performance depends largely on accurate input parameters. In this study, we use an advanced stochastic approach to quantify parameter uncertainty and model sensitivity of a coupled numerical framework for urban

Urban land–atmosphere interactions can be captured by numerical modeling framework with coupled land surface and atmospheric processes, while the model performance depends largely on accurate input parameters. In this study, we use an advanced stochastic approach to quantify parameter uncertainty and model sensitivity of a coupled numerical framework for urban land–atmosphere interactions. It is found that the development of urban boundary layer is highly sensitive to surface characteristics of built terrains. Changes of both urban land use and geometry impose significant impact on the overlying urban boundary layer dynamics through modification on bottom boundary conditions, i.e., by altering surface energy partitioning and surface aerodynamic resistance, respectively. Hydrothermal properties of conventional and green roofs have different impacts on atmospheric dynamics due to different surface energy partitioning mechanisms. Urban geometry (represented by the canyon aspect ratio), however, has a significant nonlinear impact on boundary layer structure and temperature. Besides, managing rooftop roughness provides an alternative option to change the boundary layer thermal state through modification of the vertical turbulent transport. The sensitivity analysis deepens our insight into the fundamental physics of urban land–atmosphere interactions and provides useful guidance for urban planning under challenges of changing climate and continuous global urbanization.

ContributorsSong, Jiyun (Author) / Wang, Zhi-Hua (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-05-24