This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 11 - 17 of 17
Filtering by

Clear all filters

128306-Thumbnail Image.png
Description

The Arctic, even more so than other parts of the world, has warmed substantially over the past few decades. Temperature and humidity influence the rate of development, survival and reproduction of pathogens and thus the incidence and prevalence of many infectious diseases. Higher temperatures may also allow infected host species

The Arctic, even more so than other parts of the world, has warmed substantially over the past few decades. Temperature and humidity influence the rate of development, survival and reproduction of pathogens and thus the incidence and prevalence of many infectious diseases. Higher temperatures may also allow infected host species to survive winters in larger numbers, increase the population size and expand their habitat range. The impact of these changes on human disease in the Arctic has not been fully evaluated. There is concern that climate change may shift the geographic and temporal distribution of a range of infectious diseases. Many infectious diseases are climate sensitive, where their emergence in a region is dependent on climate-related ecological changes. Most are zoonotic diseases, and can be spread between humans and animals by arthropod vectors, water, soil, wild or domestic animals. Potentially climate-sensitive zoonotic pathogens of circumpolar concern include Brucella spp., Toxoplasma gondii, Trichinella spp., Clostridium botulinum, Francisella tularensis, Borrelia burgdorferi, Bacillus anthracis, Echinococcus spp., Leptospira spp., Giardia spp., Cryptosporida spp., Coxiella burnetti, rabies virus, West Nile virus, Hantaviruses, and tick-borne encephalitis viruses.

ContributorsParkinson, Alan J. (Author) / Evengard, Birgitta (Author) / Semenza, Jan C. (Author) / Ogden, Nicholas (Author) / Borresen, Malene L. (Author) / Berner, Jim (Author) / Brubaker, Michael (Author) / Sjostedt, Anders (Author) / Evander, Magnus (Author) / Hondula, David M. (Author) / Menne, Bettina (Author) / Pshenichnaya, Natalia (Author) / Gounder, Prabhu (Author) / Larose, Tricia (Author) / Revich, Boris (Author) / Hueffer, Karsten (Author) / Albihn, Ann (Author) / College of Public Service and Community Solutions (Contributor)
Created2014-09-30
128355-Thumbnail Image.png
Description

Infection after renal transplantation remains a major cause of morbidity and death, especially infection from the extensively drug-resistant bacteria, A. baumannii. A total of fourteen A. baumannii isolates were isolated from the donors’ preserved fluid from DCD (donation after cardiac death) renal transplantation and four isolates in the recipients’ draining

Infection after renal transplantation remains a major cause of morbidity and death, especially infection from the extensively drug-resistant bacteria, A. baumannii. A total of fourteen A. baumannii isolates were isolated from the donors’ preserved fluid from DCD (donation after cardiac death) renal transplantation and four isolates in the recipients’ draining liquid at the Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, from March 2013 to November 2014. An outbreak of A. baumannii emerging after DCD renal transplantation was tracked to understand the transmission of the pathogen. PFGE displayed similar DNA patterns between isolates from the same hospital. Antimicrobial susceptibility tests against thirteen antimicrobial agents were determined using the K-B diffusion method and eTest. Whole-genome sequencing was applied to investigate the genetic relationship of the isolates. With the clinical data and research results, we concluded that the A. baumannii isolates 3R1 and 3R2 was probably transmitted from the donor who acquired the bacteria during his stay in the ICU, while isolate 4R1 was transmitted from 3R1 and 3R2 via medical manipulation. This study demonstrated the value of integration of clinical profiles with molecular methods in outbreak investigation and their importance in controlling infection and preventing serious complications after DCD transplantation.

ContributorsJiang, Hong (Author) / Cao, Luxi (Author) / Qu, Lihui (Author) / Qu, Tingting (Author) / Liu, Guangjun (Author) / Wang, Rending (Author) / Li, Bingjue (Author) / Wang, Yuchen (Author) / Ying, Chaoqun (Author) / Chen, Miao (Author) / Lu, Yingying (Author) / Feng, Shi (Author) / Xiao, Yonghong (Author) / Wang, Junwen (Author) / Wu, Jianyong (Author) / Chen, Jianghua (Author) / College of Health Solutions (Contributor)
Created2017-05-16
128353-Thumbnail Image.png
Description

Competing endogenous RNAs (ceRNAs) are RNA molecules that sequester shared microRNAs (miRNAs) thereby affecting the expression of other targets of the miRNAs. Whether genetic variants in ceRNA can affect its biological function and disease development is still an open question. Here we identified a large number of genetic variants that

Competing endogenous RNAs (ceRNAs) are RNA molecules that sequester shared microRNAs (miRNAs) thereby affecting the expression of other targets of the miRNAs. Whether genetic variants in ceRNA can affect its biological function and disease development is still an open question. Here we identified a large number of genetic variants that are associated with ceRNA's function using Geuvaids RNA-seq data for 462 individuals from the 1000 Genomes Project. We call these loci competing endogenous RNA expression quantitative trait loci or ‘cerQTL’, and found that a large number of them were unexplored in conventional eQTL mapping. We identified many cerQTLs that have undergone recent positive selection in different human populations, and showed that single nucleotide polymorphisms in gene 3΄UTRs at the miRNA seed binding regions can simultaneously regulate gene expression changes in both cis and trans by the ceRNA mechanism. We also discovered that cerQTLs are significantly enriched in traits/diseases associated variants reported from genome-wide association studies in the miRNA binding sites, suggesting that disease susceptibilities could be attributed to ceRNA regulation. Further in vitro functional experiments demonstrated that a cerQTL rs11540855 can regulate ceRNA function. These results provide a comprehensive catalog of functional non-coding regulatory variants that may be responsible for ceRNA crosstalk at the post-transcriptional level.

ContributorsLi, Mulin Jun (Author) / Zhang, Jian (Author) / Liang, Qian (Author) / Xuan, Chenghao (Author) / Wu, Jiexing (Author) / Jiang, Peng (Author) / Li, Wei (Author) / Zhu, Yun (Author) / Wang, Panwen (Author) / Fernandez, Daniel (Author) / Shen, Yujun (Author) / Chen, Yiwen (Author) / Kocher, Jean-Pierre A. (Author) / Yu, Ying (Author) / Sham, Pak Chung (Author) / Wang, Junwen (Author) / Liu, Jun S. (Author) / Liu, X. Shirley (Author) / College of Health Solutions (Contributor)
Created2017-05-02
128347-Thumbnail Image.png
Description

Bismuth drugs, despite being clinically used for decades, surprisingly remain in use and effective for the treatment of Helicobacter pylori infection, even for resistant strains when co-administrated with antibiotics. However, the molecular mechanisms underlying the clinically sustained susceptibility of H. pylori to bismuth drugs remain elusive. Herein, we report that

Bismuth drugs, despite being clinically used for decades, surprisingly remain in use and effective for the treatment of Helicobacter pylori infection, even for resistant strains when co-administrated with antibiotics. However, the molecular mechanisms underlying the clinically sustained susceptibility of H. pylori to bismuth drugs remain elusive. Herein, we report that integration of in-house metalloproteomics and quantitative proteomics allows comprehensive uncovering of the bismuth-associated proteomes, including 63 bismuth-binding and 119 bismuth-regulated proteins from Helicobacter pylori, with over 60% being annotated with catalytic functions. Through bioinformatics analysis in combination with bioassays, we demonstrated that bismuth drugs disrupted multiple essential pathways in the pathogen, including ROS defence and pH buffering, by binding and functional perturbation of a number of key enzymes. Moreover, we discovered that HpDnaK may serve as a new target of bismuth drugs to inhibit bacterium-host cell adhesion. The integrative approach we report, herein, provides a novel strategy to unveil the molecular mechanisms of antimicrobial metals against pathogens in general. This study sheds light on the design of new types of antimicrobial agents with multiple targets to tackle the current crisis of antimicrobial resistance.

ContributorsWang, Yuchuan (Author) / Hu, Ligang (Author) / Xu, Feng (Author) / Quan, Quan (Author) / Lai, Yau-Tsz (Author) / Xia, Wei (Author) / Yang, Ya (Author) / Chang, Yuen-Yan (Author) / Yang, Xinming (Author) / Chai, Zhifang (Author) / Wang, Junwen (Author) / Chu, Ivan K. (Author) / Li, Hongyan (Author) / Sun, Hongzhe (Author) / College of Health Solutions (Contributor)
Created2017-04-19
128340-Thumbnail Image.png
Description

Whole genome sequencing (WGS) is a promising strategy to unravel variants or genes responsible for human diseases and traits. However, there is a lack of robust platforms for a comprehensive downstream analysis. In the present study, we first proposed three novel algorithms, sequence gap-filled gene feature annotation, bit-block encoded genotypes

Whole genome sequencing (WGS) is a promising strategy to unravel variants or genes responsible for human diseases and traits. However, there is a lack of robust platforms for a comprehensive downstream analysis. In the present study, we first proposed three novel algorithms, sequence gap-filled gene feature annotation, bit-block encoded genotypes and sectional fast access to text lines to address three fundamental problems. The three algorithms then formed the infrastructure of a robust parallel computing framework, KGGSeq, for integrating downstream analysis functions for whole genome sequencing data. KGGSeq has been equipped with a comprehensive set of analysis functions for quality control, filtration, annotation, pathogenic prediction and statistical tests. In the tests with whole genome sequencing data from 1000 Genomes Project, KGGSeq annotated several thousand more reliable non-synonymous variants than other widely used tools (e.g. ANNOVAR and SNPEff). It took only around half an hour on a small server with 10 CPUs to access genotypes of ∼60 million variants of 2504 subjects, while a popular alternative tool required around one day. KGGSeq's bit-block genotype format used 1.5% or less space to flexibly represent phased or unphased genotypes with multiple alleles and achieved a speed of over 1000 times faster to calculate genotypic correlation.

ContributorsLi, Miaoxin (Author) / Li, Jiang (Author) / Li, Mulin Jun (Author) / Pan, Zhicheng (Author) / Hsu, Jacob Shujui (Author) / Liu, Dajiang J. (Author) / Zhan, Xiaowei (Author) / Wang, Junwen (Author) / Song, Youqiang (Author) / Sham, Pak Chung (Author) / College of Health Solutions (Contributor)
Created2017-01-23
128018-Thumbnail Image.png
Description

Background: Multiple methods are employed for modeling adaptation when projecting the impact of climate change on heat-related mortality. The sensitivity of impacts to each is unknown because they have never been systematically compared. In addition, little is known about the relative sensitivity of impacts to “adaptation uncertainty” (i.e., the inclusion/exclusion

Background: Multiple methods are employed for modeling adaptation when projecting the impact of climate change on heat-related mortality. The sensitivity of impacts to each is unknown because they have never been systematically compared. In addition, little is known about the relative sensitivity of impacts to “adaptation uncertainty” (i.e., the inclusion/exclusion of adaptation modeling) relative to using multiple climate models and emissions scenarios.

Objectives: This study had three aims: a) Compare the range in projected impacts that arises from using different adaptation modeling methods; b) compare the range in impacts that arises from adaptation uncertainty with ranges from using multiple climate models and emissions scenarios; c) recommend modeling method(s) to use in future impact assessments.

Methods: We estimated impacts for 2070–2099 for 14 European cities, applying six different methods for modeling adaptation; we also estimated impacts with five climate models run under two emissions scenarios to explore the relative effects of climate modeling and emissions uncertainty.

Results: The range of the difference (percent) in impacts between including and excluding adaptation, irrespective of climate modeling and emissions uncertainty, can be as low as 28% with one method and up to 103% with another (mean across 14 cities). In 13 of 14 cities, the ranges in projected impacts due to adaptation uncertainty are larger than those associated with climate modeling and emissions uncertainty.

Conclusions: Researchers should carefully consider how to model adaptation because it is a source of uncertainty that can be greater than the uncertainty in emissions and climate modeling. We recommend absolute threshold shifts and reductions in slope.

ContributorsGosling, Simon N. (Author) / Hondula, David M. (Author) / Bunker, Aditi (Author) / Ibarreta, Dolores (Author) / Liu, Junguo (Author) / Zhang, Xinxin (Author) / Sauerborn, Rainer (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-08-16
128015-Thumbnail Image.png
Description

Background: Extreme heat is a leading weather-related cause of illness and death in many locations across the globe, including subtropical Australia. The possibility of increasingly frequent and severe heat waves warrants continued efforts to reduce this health burden, which could be accomplished by targeting intervention measures toward the most vulnerable

Background: Extreme heat is a leading weather-related cause of illness and death in many locations across the globe, including subtropical Australia. The possibility of increasingly frequent and severe heat waves warrants continued efforts to reduce this health burden, which could be accomplished by targeting intervention measures toward the most vulnerable communities.

Objectives: We sought to quantify spatial variability in heat-related morbidity in Brisbane, Australia, to highlight regions of the city with the greatest risk. We also aimed to find area-level social and environmental determinants of high risk within Brisbane.

Methods: We used a series of hierarchical Bayesian models to examine city-wide and intracity associations between temperature and morbidity using a 2007–2011 time series of geographically referenced hospital admissions data. The models accounted for long-term time trends, seasonality, and day of week and holiday effects.

Results: On average, a 10°C increase in daily maximum temperature during the summer was associated with a 7.2% increase in hospital admissions (95% CI: 4.7, 9.8%) on the following day. Positive statistically significant relationships between admissions and temperature were found for 16 of the city’s 158 areas; negative relationships were found for 5 areas. High-risk areas were associated with a lack of high income earners and higher population density.

Conclusions: Geographically targeted public health strategies for extreme heat may be effective in Brisbane, because morbidity risk was found to be spatially variable. Emergency responders, health officials, and city planners could focus on short- and long-term intervention measures that reach communities in the city with lower incomes and higher population densities, including reduction of urban heat island effects.

Created2014-08-01