This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 25
Filtering by

Clear all filters

127858-Thumbnail Image.png
Description

Background: While there is ample evidence for health risks associated with heat and other extreme weather events today, little is known about the impact of weather patterns on population health in preindustrial societies.

Objective: To investigate the impact of weather patterns on population health in Sweden before and during industrialization.

Methods: We

Background: While there is ample evidence for health risks associated with heat and other extreme weather events today, little is known about the impact of weather patterns on population health in preindustrial societies.

Objective: To investigate the impact of weather patterns on population health in Sweden before and during industrialization.

Methods: We obtained records of monthly mortality and of monthly mean temperatures and precipitation for Skellefteå parish, northern Sweden, for the period 1800-1950. The associations between monthly total mortality, as well as monthly mortality due to infectious and cardiovascular diseases, and monthly mean temperature and cumulative precipitation were modelled using a time series approach for three separate periods, 1800−1859, 1860-1909, and 1910-1950.

Results: We found higher temperatures and higher amounts of precipitation to be associated with lower mortality both in the medium term (same month and two-months lag) and in the long run (lag of six months up to a year). Similar patterns were found for mortality due to infectious and cardiovascular diseases. Furthermore, the effect of temperature and precipitation decreased over time.

Conclusions: Higher temperature and precipitation amounts were associated with reduced death counts with a lag of up to 12 months. The decreased effect over time may be due to improvements in nutritional status, decreased infant deaths, and other changes in society that occurred in the course of the demographic and epidemiological transition.

Contribution: The study contributes to a better understanding of the complex relationship between weather and mortality and, in particular, historical weather-related mortality.

ContributorsDaniel, Oudin Astrom (Author) / Edvinsson, Soren (Author) / Hondula, David M. (Author) / Rocklov, Joacim (Author) / Schumann, Barbara (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-10-05
128776-Thumbnail Image.png
Description

We know very little about how soil-borne pollutants such as selenium (Se) can impact pollinators, even though Se has contaminated soils and plants in areas where insect pollination can be critical to the functioning of both agricultural and natural ecosystems. Se can be biotransferred throughout the food web, but few

We know very little about how soil-borne pollutants such as selenium (Se) can impact pollinators, even though Se has contaminated soils and plants in areas where insect pollination can be critical to the functioning of both agricultural and natural ecosystems. Se can be biotransferred throughout the food web, but few studies have examined its effects on the insects that feed on Se-accumulating plants, particularly pollinators. In laboratory bioassays, we used proboscis extension reflex (PER) and taste perception to determine if the presence of Se affected the gustatory response of honey bee (Apis mellifera L., Hymenoptera: Apidae) foragers. Antennae and proboscises were stimulated with both organic (selenomethionine) and inorganic (selenate) forms of Se that commonly occur in Se-accumulating plants. Methionine was also tested. Each compound was dissolved in 1 M sucrose at 5 concentrations, with sucrose alone as a control. Antennal stimulation with selenomethionine and methionine reduced PER at higher concentrations. Selenate did not reduce gustatory behaviors. Two hours after being fed the treatments, bees were tested for sucrose response threshold. Bees fed selenate responded less to sucrose stimulation. Mortality was higher in bees chronically dosed with selenate compared with a single dose. Selenomethionine did not increase mortality except at the highest concentration. Methionine did not significantly impact survival. Our study has shown that bees fed selenate were less responsive to sucrose, which may lead to a reduction in incoming floral resources needed to support coworkers and larvae in the field. If honey bees forage on nectar containing Se (particularly selenate), reductions in population numbers may occur due to direct toxicity. Given that honey bees are willing to consume food resources containing Se and may not avoid Se compounds in the plant tissues on which they are foraging, they may suffer similar adverse effects as seen in other insect guilds.

ContributorsHladun, Kristen R. (Author) / Smith, Brian (Author) / Mustard, Julie (Author) / Morton, Ray R. (Author) / Trumble, John T. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2012-04-13
128905-Thumbnail Image.png
Description

Octopamine plays an important role in many behaviors in invertebrates. It acts via binding to G protein coupled receptors located on the plasma membrane of responsive cells. Several distinct subtypes of octopamine receptors have been found in invertebrates, yet little is known about the expression pattern of these different receptor

Octopamine plays an important role in many behaviors in invertebrates. It acts via binding to G protein coupled receptors located on the plasma membrane of responsive cells. Several distinct subtypes of octopamine receptors have been found in invertebrates, yet little is known about the expression pattern of these different receptor subtypes and how each subtype may contribute to different behaviors. One honey bee (Apis mellifera) octopamine receptor, AmOA1, was recently cloned and characterized. Here we continue to characterize the AmOA1 receptor by investigating its distribution in the honey bee brain. We used two independent antibodies produced against two distinct peptides in the carboxyl-terminus to study the distribution of the AmOA1 receptor in the honey bee brain. We found that both anti-AmOA1 antibodies revealed labeling of cell body clusters throughout the brain and within the following brain neuropils: the antennal lobes; the calyces, pedunculus, vertical (alpha, gamma) and medial (beta) lobes of the mushroom body; the optic lobes; the subesophageal ganglion; and the central complex. Double immunofluorescence staining using anti-GABA and anti-AmOA1 receptor antibodies revealed that a population of inhibitory GABAergic local interneurons in the antennal lobes express the AmOA1 receptor in the cell bodies, axons and their endings in the glomeruli. In the mushroom bodies, AmOA1 receptors are expressed in a subpopulation of inhibitory GABAergic feedback neurons that ends in the visual (outer half of basal ring and collar regions) and olfactory (lip and inner basal ring region) calyx neuropils, as well as in the collar and lip zones of the vertical and medial lobes. The data suggest that one effect of octopamine via AmOA1 in the antennal lobe and mushroom body is to modulate inhibitory neurons.

ContributorsSinakevitch, Irina (Author) / Mustard, Julie (Author) / Smith, Brian (Author) / College of Liberal Arts and Sciences (Contributor)
Created2011-01-18
128889-Thumbnail Image.png
Description

Neural representations of odors are subject to computations that involve sequentially convergent and divergent anatomical connections across different areas of the brains in both mammals and insects. Furthermore, in both mammals and insects higher order brain areas are connected via feedback connections. In order to understand the transformations and interactions

Neural representations of odors are subject to computations that involve sequentially convergent and divergent anatomical connections across different areas of the brains in both mammals and insects. Furthermore, in both mammals and insects higher order brain areas are connected via feedback connections. In order to understand the transformations and interactions that this connectivity make possible, an ideal experiment would compare neural responses across different, sequential processing levels. Here we present results of recordings from a first order olfactory neuropile – the antennal lobe (AL) – and a higher order multimodal integration and learning center – the mushroom body (MB) – in the honey bee brain. We recorded projection neurons (PN) of the AL and extrinsic neurons (EN) of the MB, which provide the outputs from the two neuropils. Recordings at each level were made in different animals in some experiments and simultaneously in the same animal in others. We presented two odors and their mixture to compare odor response dynamics as well as classification speed and accuracy at each neural processing level. Surprisingly, the EN ensemble significantly starts separating odor stimuli rapidly and before the PN ensemble has reached significant separation. Furthermore the EN ensemble at the MB output reaches a maximum separation of odors between 84–120 ms after odor onset, which is 26 to 133 ms faster than the maximum separation at the AL output ensemble two synapses earlier in processing. It is likely that a subset of very fast PNs, which respond before the ENs, may initiate the rapid EN ensemble response. We suggest therefore that the timing of the EN ensemble activity would allow retroactive integration of its signal into the ongoing computation of the AL via centrifugal feedback.

ContributorsStrube-Bloss, Martin (Author) / Herrera-Valdez, Marco A. (Author) / Smith, Brian (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2012-11-29
128972-Thumbnail Image.png
Description

Background: Most excess deaths that occur during extreme hot weather events do not have natural heat recorded as an underlying or contributing cause. This study aims to identify the specific individuals who died because of hot weather using only secondary data. A novel approach was developed in which the expected number

Background: Most excess deaths that occur during extreme hot weather events do not have natural heat recorded as an underlying or contributing cause. This study aims to identify the specific individuals who died because of hot weather using only secondary data. A novel approach was developed in which the expected number of deaths was repeatedly sampled from all deaths that occurred during a hot weather event, and compared with deaths during a control period. The deaths were compared with respect to five factors known to be associated with hot weather mortality. Individuals were ranked by their presence in significant models over 100 trials of 10,000 repetitions. Those with the highest rankings were identified as probable excess deaths. Sensitivity analyses were performed on a range of model combinations. These methods were applied to a 2009 hot weather event in greater Vancouver, Canada.

Results: The excess deaths identified were sensitive to differences in model combinations, particularly between univariate and multivariate approaches. One multivariate and one univariate combination were chosen as the best models for further analyses. The individuals identified by multiple combinations suggest that marginalized populations in greater Vancouver are at higher risk of death during hot weather.

Conclusions: This study proposes novel methods for classifying specific deaths as expected or excess during a hot weather event. Further work is needed to evaluate performance of the methods in simulation studies and against clinically identified cases. If confirmed, these methods could be applied to a wide range of populations and events of interest.

Created2016-11-15
129403-Thumbnail Image.png
Description

The Quadrangles Av-11 and Av-12 on Vesta are located at the northern rim of the giant Rheasilvia south polar impact basin. The primary geologic units in Av-11 and Av-12 include material from the Rheasilvia impact basin formation, smooth material and different types of impact crater structures (such as bimodal craters,

The Quadrangles Av-11 and Av-12 on Vesta are located at the northern rim of the giant Rheasilvia south polar impact basin. The primary geologic units in Av-11 and Av-12 include material from the Rheasilvia impact basin formation, smooth material and different types of impact crater structures (such as bimodal craters, dark and bright crater ray material and dark ejecta material). Av-11 and Av-12 exhibit almost the full range of mass wasting features observed on Vesta, such as slump blocks, spur-and-gully morphologies and landslides within craters. Processes of collapse, slope instability and seismically triggered events force material to slump down crater walls or scarps and produce landslides or rotational slump blocks. The spur-and-gully morphology that is known to form on Mars is also observed on Vesta; however, on Vesta this morphology formed under dry conditions.

ContributorsKrohn, K. (Author) / Jaumann, R. (Author) / Otto, K. (Author) / Hoogenboom, T. (Author) / Wagner, R. (Author) / Buczkowski, D. L. (Author) / Garry, B. (Author) / Williams, David (Author) / Yingst, R. A. (Author) / Scully, J. (Author) / De Sanctis, M. C. (Author) / Kneissl, T. (Author) / Schmedemann, N. (Author) / Kersten, E. (Author) / Stephan, K. (Author) / Matz, K-D. (Author) / Pieters, C. M. (Author) / Preusker, F. (Author) / Roatsch, T. (Author) / Schenk, P. (Author) / Russell, C. T. (Author) / Raymond, C. A. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-01
129402-Thumbnail Image.png
Description

A variety of geologic landforms and features are observed within quadrangle Av-13 Tuccia in the southern hemisphere of Vesta. The quadrangle covers parts of the highland Vestalia Terra as well as the floors of the large Rheasilvia and Veneneia impact basins, which results in a substantial elevation difference of more

A variety of geologic landforms and features are observed within quadrangle Av-13 Tuccia in the southern hemisphere of Vesta. The quadrangle covers parts of the highland Vestalia Terra as well as the floors of the large Rheasilvia and Veneneia impact basins, which results in a substantial elevation difference of more than 40 km between the northern and the southern portions of the quadrangle. Measurements of crater size–frequency distributions within and surrounding the Rheasilvia basin indicate that gravity-driven mass wasting in the interior of the basin has been important, and that the basin has a more ancient formation age than would be expected from the crater density on the basin floor alone. Subsequent to its formation, Rheasilvia was superimposed by several mid-sized impact craters. The most prominent craters are Tuccia, Eusebia, Vibidia, Galeria, and Antonia, whose geology and formation ages are investigated in detail in this work. These impact structures provide a variety of morphologies indicating different sorts of subsequent impact-related or gravity-driven mass wasting processes. Understanding the geologic history of the relatively young craters in the Rheasilvia basin is important in order to understand the even more degraded craters in other regions of Vesta.

ContributorsKneissl, T. (Author) / Schmedemann, N. (Author) / Reddy, V. (Author) / Williams, David (Author) / Walter, S. H. G. (Author) / Neesemann, A. (Author) / Michael, G. G. (Author) / Jaumann, R. (Author) / Krohn, K. (Author) / Preusker, F. (Author) / Roatsch, T. (Author) / Le Corre, L. (Author) / Nathues, A. (Author) / Hoffmann, M. (Author) / Schaefer, M. (Author) / Buczkowski, D. (Author) / Garry, W. B. (Author) / Yingst, R. A. (Author) / Mest, S. C. (Author) / Russell, C. T. (Author) / Raymond, C. A. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-01
129398-Thumbnail Image.png
Description

In this paper we present a time-stratigraphic scheme and geologic time scale for the protoplanet Vesta, based on global geologic mapping and other analyses of NASA Dawn spacecraft data, complemented by insights gained from laboratory studies of howardite–eucrite–diogenite (HED) meteorites and geophysical modeling. On the basis of prominent impact structures

In this paper we present a time-stratigraphic scheme and geologic time scale for the protoplanet Vesta, based on global geologic mapping and other analyses of NASA Dawn spacecraft data, complemented by insights gained from laboratory studies of howardite–eucrite–diogenite (HED) meteorites and geophysical modeling. On the basis of prominent impact structures and their associated deposits, we propose a time scale for Vesta that consists of four geologic time periods: Pre-Veneneian, Veneneian, Rheasilvian, and Marcian. The Pre-Veneneian Period covers the time from the formation of Vesta up to the Veneneia impact event, from 4.6 Ga to >2.1 Ga (using the asteroid flux-derived chronology system) or from 4.6 Ga to 3.7 Ga (under the lunar-derived chronology system). The Veneneian Period covers the time span between the Veneneia and Rheasilvia impact events, from >2.1 to 1 Ga (asteroid flux-derived chronology) or from 3.7 to 3.5 Ga (lunar-derived chronology), respectively. The Rheasilvian Period covers the time span between the Rheasilvia and Marcia impact events, and the Marcian Period covers the time between the Marcia impact event until the present. The age of the Marcia impact is still uncertain, but our current best estimates from crater counts of the ejecta blanket suggest an age between ∼120 and 390 Ma, depending upon choice of chronology system used. Regardless, the Marcia impact represents the youngest major geologic event on Vesta. Our proposed four-period geologic time scale for Vesta is, to a first order, comparable to those developed for other airless terrestrial bodies.

ContributorsWilliams, David (Author) / Jaumann, R. (Author) / McSween, H. Y. (Author) / Marchi, S. (Author) / Schmedemann, N. (Author) / Raymond, C. A. (Author) / Russell, C. T. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-01
129396-Thumbnail Image.png
Description

We report on a preliminary global geologic map of Vesta, based on data from the Dawn spacecraft’s High-Altitude Mapping Orbit (HAMO) and informed by Low-Altitude Mapping Orbit (LAMO) data. This map is part of an iterative mapping effort; the geologic map has been refined with each improvement in resolution. Vesta

We report on a preliminary global geologic map of Vesta, based on data from the Dawn spacecraft’s High-Altitude Mapping Orbit (HAMO) and informed by Low-Altitude Mapping Orbit (LAMO) data. This map is part of an iterative mapping effort; the geologic map has been refined with each improvement in resolution. Vesta has a heavily-cratered surface, with large craters evident in numerous locations. The south pole is dominated by an impact structure identified before Dawn’s arrival. Two large impact structures have been resolved: the younger, larger Rheasilvia structure, and the older, more degraded Veneneia structure. The surface is also characterized by a system of deep, globe-girdling equatorial troughs and ridges, as well as an older system of troughs and ridges to the north. Troughs and ridges are also evident cutting across, and spiraling arcuately from, the Rheasilvia central mound.

However, no volcanic features have been unequivocally identified. Vesta can be divided very broadly into three terrains: heavily-cratered terrain; ridge-and-trough terrain (equatorial and northern); and terrain associated with the Rheasilvia crater. Localized features include bright and dark material and ejecta (some defined specifically by color); lobate deposits; and mass-wasting materials. No obvious volcanic features are evident. Stratigraphy of Vesta’s geologic units suggests a history in which formation of a primary crust was followed by the formation of impact craters, including Veneneia and the associated Saturnalia Fossae unit. Formation of Rheasilvia followed, along with associated structural deformation that shaped the Divalia Fossae ridge-and-trough unit at the equator. Subsequent impacts and mass wasting events subdued impact craters, rims and portions of ridge-and-trough sets, and formed slumps and landslides, especially within crater floors and along crater rims and scarps. Subsequent to the formation of Rheasilvia, discontinuous low-albedo deposits formed or were emplaced; these lie stratigraphically above the equatorial ridges that likely were formed by Rheasilvia. The last features to be formed were craters with bright rays and other surface mantling deposits.

Executed progressively throughout data acquisition, the iterative mapping process provided the team with geologic proto-units in a timely manner. However, interpretation of the resulting map was hampered by the necessity to provide the team with a standard nomenclature and symbology early in the process. With regard to mapping and interpreting units, the mapping process was hindered by the lack of calibrated mineralogic information. Topography and shadow played an important role in discriminating features and terrains, especially in the early stages of data acquisition.

ContributorsYingst, R. A. (Author) / Mest, S. C. (Author) / Berman, D. C. (Author) / Garry, W. B. (Author) / Williams, David (Author) / Buczkowski, D. (Author) / Jaumann, R. (Author) / Pieters, C. M. (Author) / De Sanctis, M. C. (Author) / Frigeri, A. (Author) / Le Corre, L. (Author) / Preusker, F. (Author) / Raymond, C. A. (Author) / Reddy, V. (Author) / Russell, C. T. (Author) / Roatsch, T. (Author) / Schenk, P. M. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-11-15
129395-Thumbnail Image.png
Description

Vesta is a unique, intermediate class of rocky body in the Solar System, between terrestrial planets and small asteroids, because of its size (average radius of ∼263 km) and differentiation, with a crust, mantle and core. Vesta’s low surface gravity (0.25 m/s2) has led to the continual absence of a

Vesta is a unique, intermediate class of rocky body in the Solar System, between terrestrial planets and small asteroids, because of its size (average radius of ∼263 km) and differentiation, with a crust, mantle and core. Vesta’s low surface gravity (0.25 m/s2) has led to the continual absence of a protective atmosphere and consequently impact cratering and impact-related processes are prevalent. Previous work has shown that the formation of the Rheasilvia impact basin induced the equatorial Divalia Fossae, whereas the formation of the Veneneia impact basin induced the northern Saturnalia Fossae. Expanding upon this earlier work, we conducted photogeologic mapping of the Saturnalia Fossae, adjacent structures and geomorphic units in two of Vesta’s northern quadrangles: Caparronia and Domitia. Our work indicates that impact processes created and/or modified all mapped structures and geomorphic units. The mapped units, ordered from oldest to youngest age based mainly on cross-cutting relationships, are: (1) Vestalia Terra unit, (2) cratered highlands unit, (3) Saturnalia Fossae trough unit, (4) Saturnalia Fossae cratered unit, (5) undifferentiated ejecta unit, (6) dark lobate unit, (7) dark crater ray unit and (8) lobate crater unit. The Saturnalia Fossae consist of five separate structures: Saturnalia Fossa A is the largest (maximum width of ∼43 km) and is interpreted as a graben, whereas Saturnalia Fossa B-E are smaller (maximum width of ∼15 km) and are interpreted as half grabens formed by synthetic faults. Smaller, second-order structures (maximum width of <1 km) are distinguished from the Saturnalia Fossae, a first-order structure, by the use of the general descriptive term ‘adjacent structures’, which encompasses minor ridges, grooves and crater chains. For classification purposes, the general descriptive term ‘minor ridges’ characterizes ridges that are not part of the Saturnalia Fossae and are an order of magnitude smaller (maximum width of <1 km vs. maximum width of ∼43 km). Shear deformation resulting from the large-scale (diameter of <100 km) Rheasilvia impact is proposed to form minor ridges (∼2 km to ∼25 km in length), which are interpreted as the surface expression of thrust faults, as well as grooves (∼3 km to ∼25 km in length) and pit crater chains (∼1 km to ∼25 km in length), which are interpreted as the surface expression of extension fractures and/or dilational normal faults. Secondary crater material, ejected from small-scale and medium-scale impacts (diameters of <100 km), are interpreted to form ejecta ray systems of grooves and crater chains by bouncing and scouring across the surface. Furthermore, seismic shaking, also resulting from small-scale and medium-scale impacts, is interpreted to form minor ridges because seismic shaking induces flow of regolith, which subsequently accumulates as minor ridges that are roughly parallel to the regional slope. In this work we expand upon the link between impact processes and structural features on Vesta by presenting findings of a photogeologic, structural mapping study which highlights how impact cratering and impact-related processes are expressed on this unique, intermediate Solar System body.

ContributorsScully, Jennifer E. C. (Author) / Yin, A. (Author) / Russell, C. T. (Author) / Buczkowski, D. L. (Author) / Williams, David (Author) / Blewett, D. T. (Author) / Ruesch, O. (Author) / Hiesinger, H. (Author) / Le Corre, L. (Author) / Mercer, Cameron (Author) / Yingst, R. A. (Author) / Garry, W. B. (Author) / Jaumann, R. (Author) / Roatsch, T. (Author) / Preusker, F. (Author) / Gaskell, R.W. (Author) / Schroder, S.E. (Author) / Ammannito, E. (Author) / Pieters, C. M. (Author) / Raymond, C. A. (Author) / DREAM 9 AML-OPC Consortium (Contributor)
Created2014-01-29