This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 29
Filtering by

Clear all filters

129333-Thumbnail Image.png
Description

MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene output at the post-transcriptional level by targeting degenerate elements primarily in 3′untranslated regions (3′UTRs) of mRNAs. Individual miRNAs can regulate networks of hundreds of genes, yet for the majority of miRNAs few, if any, targets are known. Misexpression of miRNAs is

MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene output at the post-transcriptional level by targeting degenerate elements primarily in 3′untranslated regions (3′UTRs) of mRNAs. Individual miRNAs can regulate networks of hundreds of genes, yet for the majority of miRNAs few, if any, targets are known. Misexpression of miRNAs is also a major contributor to cancer progression, thus there is a critical need to validate miRNA targets in high-throughput to understand miRNAs' contribution to tumorigenesis. Here we introduce a novel high-throughput assay to detect miRNA targets in 3′UTRs, called Luminescent Identification of Functional Elements in 3′UTRs (3′LIFE). We demonstrate the feasibility of 3′LIFE using a data set of 275 human 3′UTRs and two cancer-relevant miRNAs, let-7c and miR-10b, and compare our results to alternative methods to detect miRNA targets throughout the genome. We identify a large number of novel gene targets for these miRNAs, with only 32% of hits being bioinformatically predicted and 27% directed by non-canonical interactions. Functional analysis of target genes reveals consistent roles for each miRNA as either a tumor suppressor (let-7c) or oncogenic miRNA (miR-10b), and preferentially target multiple genes within regulatory networks, suggesting 3′LIFE is a rapid and sensitive method to detect miRNA targets in high-throughput.

ContributorsWolter, Justin (Author) / Kotagama, Kasuen (Author) / Pierre-Bez, Alexandra C. (Author) / Firago, Mari (Author) / Mangone, Marco (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-09-29
129254-Thumbnail Image.png
Description

Over the past couple of decades, quality has been an area of increased focus. Multiple models and approaches have been proposed to measure the quality in the construction industry. This paper focuses on determining the quality of one of the types of roofing systems used in the construction industry, i.e.,

Over the past couple of decades, quality has been an area of increased focus. Multiple models and approaches have been proposed to measure the quality in the construction industry. This paper focuses on determining the quality of one of the types of roofing systems used in the construction industry, i.e., sprayed polyurethane foam roofs (SPF roofs). Thirty-seven urethane-coated SPF roofs that were installed in 2005/2006 were visually inspected to measure the percentage of blisters and repairs three times over a period of four years, six years, and seven years. A repairing criteria was established after a six-year mark based on the data that were reported to contractors as vulnerable roofs. Furthermore, the relation between four possible contributing time-of-installation factors—contractor, demographics, season, and difficulty (number of penetrations and size of the roof in square feet) that could affect the quality of the roof was determined. Demographics and difficulty did not affect the quality of the roofs, whereas the contractor and the season when the roof was installed did affect the quality of the roofs.

ContributorsGajjar, Dhaval (Author) / Kashiwagi, Dean (Author) / Sullivan, Kenneth (Author) / Kashiwagi, Jacob (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-04-01
128691-Thumbnail Image.png
Description

Although emerging evidence indicates that deep-sea water contains an untapped reservoir of high metabolic and genetic diversity, this realm has not been studied well compared with surface sea water. The study provided the first integrated meta-genomic and -transcriptomic analysis of the microbial communities in deep-sea water of North Pacific Ocean.

Although emerging evidence indicates that deep-sea water contains an untapped reservoir of high metabolic and genetic diversity, this realm has not been studied well compared with surface sea water. The study provided the first integrated meta-genomic and -transcriptomic analysis of the microbial communities in deep-sea water of North Pacific Ocean. DNA/RNA amplifications and simultaneous metagenomic and metatranscriptomic analyses were employed to discover information concerning deep-sea microbial communities from four different deep-sea sites ranging from the mesopelagic to pelagic ocean. Within the prokaryotic community, bacteria is absolutely dominant (~90%) over archaea in both metagenomic and metatranscriptomic data pools. The emergence of archaeal phyla Crenarchaeota, Euryarchaeota, Thaumarchaeota, bacterial phyla Actinobacteria, Firmicutes, sub-phyla Betaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria, and the decrease of bacterial phyla Bacteroidetes and Alphaproteobacteria are the main composition changes of prokaryotic communities in the deep-sea water, when compared with the reference Global Ocean Sampling Expedition (GOS) surface water. Photosynthetic Cyanobacteria exist in all four metagenomic libraries and two metatranscriptomic libraries. In Eukaryota community, decreased abundance of fungi and algae in deep sea was observed. RNA/DNA ratio was employed as an index to show metabolic activity strength of microbes in deep sea. Functional analysis indicated that deep-sea microbes are leading a defensive lifestyle.

ContributorsWu, Jieying (Author) / Gao, Weimin (Author) / Johnson, Roger (Author) / Zhang, Weiwen (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2013-10-11
128972-Thumbnail Image.png
Description

Background: Most excess deaths that occur during extreme hot weather events do not have natural heat recorded as an underlying or contributing cause. This study aims to identify the specific individuals who died because of hot weather using only secondary data. A novel approach was developed in which the expected number

Background: Most excess deaths that occur during extreme hot weather events do not have natural heat recorded as an underlying or contributing cause. This study aims to identify the specific individuals who died because of hot weather using only secondary data. A novel approach was developed in which the expected number of deaths was repeatedly sampled from all deaths that occurred during a hot weather event, and compared with deaths during a control period. The deaths were compared with respect to five factors known to be associated with hot weather mortality. Individuals were ranked by their presence in significant models over 100 trials of 10,000 repetitions. Those with the highest rankings were identified as probable excess deaths. Sensitivity analyses were performed on a range of model combinations. These methods were applied to a 2009 hot weather event in greater Vancouver, Canada.

Results: The excess deaths identified were sensitive to differences in model combinations, particularly between univariate and multivariate approaches. One multivariate and one univariate combination were chosen as the best models for further analyses. The individuals identified by multiple combinations suggest that marginalized populations in greater Vancouver are at higher risk of death during hot weather.

Conclusions: This study proposes novel methods for classifying specific deaths as expected or excess during a hot weather event. Further work is needed to evaluate performance of the methods in simulation studies and against clinically identified cases. If confirmed, these methods could be applied to a wide range of populations and events of interest.

Created2016-11-15
129065-Thumbnail Image.png
Description

Background: Lizards are evolutionarily the most closely related vertebrates to humans that can lose and regrow an entire appendage. Regeneration in lizards involves differential expression of hundreds of genes that regulate wound healing, musculoskeletal development, hormonal response, and embryonic morphogenesis. While microRNAs are able to regulate large groups of genes, their

Background: Lizards are evolutionarily the most closely related vertebrates to humans that can lose and regrow an entire appendage. Regeneration in lizards involves differential expression of hundreds of genes that regulate wound healing, musculoskeletal development, hormonal response, and embryonic morphogenesis. While microRNAs are able to regulate large groups of genes, their role in lizard regeneration has not been investigated.

Results: MicroRNA sequencing of green anole lizard (Anolis carolinensis) regenerating tail and associated tissues revealed 350 putative novel and 196 known microRNA precursors. Eleven microRNAs were differentially expressed between the regenerating tail tip and base during maximum outgrowth (25 days post autotomy), including miR-133a, miR-133b, and miR-206, which have been reported to regulate regeneration and stem cell proliferation in other model systems. Three putative novel differentially expressed microRNAs were identified in the regenerating tail tip.

Conclusions: Differentially expressed microRNAs were identified in the regenerating lizard tail, including known regulators of stem cell proliferation. The identification of 3 putative novel microRNAs suggests that regulatory networks, either conserved in vertebrates and previously uncharacterized or specific to lizards, are involved in regeneration. These findings suggest that differential regulation of microRNAs may play a role in coordinating the timing and expression of hundreds of genes involved in regeneration.

ContributorsHutchins, Elizabeth (Author) / Eckalbar, Walter (Author) / Wolter, Justin (Author) / Mangone, Marco (Author) / Kusumi, Kenro (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-05-05
129076-Thumbnail Image.png
Description

Background: Tissue-specific RNA plasticity broadly impacts the development, tissue identity and adaptability of all organisms, but changes in composition, expression levels and its impact on gene regulation in different somatic tissues are largely unknown. Here we developed a new method, polyA-tagging and sequencing (PAT-Seq) to isolate high-quality tissue-specific mRNA from Caenorhabditis

Background: Tissue-specific RNA plasticity broadly impacts the development, tissue identity and adaptability of all organisms, but changes in composition, expression levels and its impact on gene regulation in different somatic tissues are largely unknown. Here we developed a new method, polyA-tagging and sequencing (PAT-Seq) to isolate high-quality tissue-specific mRNA from Caenorhabditis elegans intestine, pharynx and body muscle tissues and study changes in their tissue-specific transcriptomes and 3’UTRomes.

Results: We have identified thousands of novel genes and isoforms differentially expressed between these three tissues. The intestine transcriptome is expansive, expressing over 30% of C. elegans mRNAs, while muscle transcriptomes are smaller but contain characteristic unique gene signatures. Active promoter regions in all three tissues reveal both known and novel enriched tissue-specific elements, along with putative transcription factors, suggesting novel tissue-specific modes of transcription initiation. We have precisely mapped approximately 20,000 tissue-specific polyadenylation sites and discovered that about 30% of transcripts in somatic cells use alternative polyadenylation in a tissue-specific manner, with their 3’UTR isoforms significantly enriched with microRNA targets.

Conclusions: For the first time, PAT-Seq allowed us to directly study tissue specific gene expression changes in an in vivo setting and compare these changes between three somatic tissues from the same organism at single-base resolution within the same experiment. We pinpoint precise tissue-specific transcriptome rearrangements and for the first time link tissue-specific alternative polyadenylation to miRNA regulation, suggesting novel and unexplored tissue-specific post-transcriptional regulatory networks in somatic cells.

ContributorsBlazie, Stephen (Author) / Babb, Cody (Author) / Wilky, Henry (Author) / Rawls, Alan (Author) / Park, Jin (Author) / Mangone, Marco (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-01-20
129101-Thumbnail Image.png
Description

Background: 3′untranslated regions (3′UTRs) are poorly understood portions of eukaryotic mRNAs essential for post-transcriptional gene regulation. Sequence elements in 3′UTRs can be target sites for regulatory molecules such as RNA binding proteins and microRNAs (miRNAs), and these interactions can exert significant control on gene networks. However, many such interactions remain uncharacterized

Background: 3′untranslated regions (3′UTRs) are poorly understood portions of eukaryotic mRNAs essential for post-transcriptional gene regulation. Sequence elements in 3′UTRs can be target sites for regulatory molecules such as RNA binding proteins and microRNAs (miRNAs), and these interactions can exert significant control on gene networks. However, many such interactions remain uncharacterized due to a lack of high-throughput (HT) tools to study 3′UTR biology. HT cloning efforts such as the human ORFeome exemplify the potential benefits of genomic repositories for studying human disease, especially in relation to the discovery of biomarkers and targets for therapeutic agents. Currently there are no publicly available human 3′UTR libraries. To address this we have prepared the first version of the human 3′UTRome (h3′UTRome v1) library. The h3′UTRome is produced to a single high quality standard using the same recombinational cloning technology used for the human ORFeome, enabling universal operating methods and high throughput experimentation. The library is thoroughly sequenced and annotated with simple online access to information, and made publicly available through gene repositories at low cost to all scientists with minimal restriction.

Results: The first release of the h3′UTRome library comprises 1,461 human 3′UTRs cloned into Gateway® entry vectors, ready for downstream analyses. It contains 3′UTRs for 985 transcription factors, 156 kinases, 171 RNA binding proteins, and 186 other genes involved in gene regulation and in disease. We demonstrate the feasibility of the h3′UTRome library by screening a panel of 87 3′UTRs for targeting by two miRNAs: let-7c, which is implicated in tumorigenesis, and miR-221, which is implicated in atherosclerosis and heart disease. The panel is enriched with genes involved in the RAS signaling pathway, putative novel targets for the two miRNAs, as well as genes implicated in tumorigenesis and heart disease.

Conclusions: The h3′UTRome v1 library is a modular resource that can be utilized for high-throughput screens to identify regulatory interactions between trans-acting factors and 3′UTRs, Importantly, the library can be customized based on the specifications of the researcher, allowing the systematic study of human 3′UTR biology.

ContributorsKotagama, Kasuen (Author) / Babb, Cody (Author) / Wolter, Justin (Author) / Murphy, Ronan P. (Author) / Mangone, Marco (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-12-09
128771-Thumbnail Image.png
Description

Cellular heterogeneity plays a pivotal role in a variety of functional processes in vivo including carcinogenesis. However, our knowledge about cell-to-cell diversity and how differences in individual cells manifest in alterations at the population level remains very limited mainly due to the lack of appropriate tools enabling studies at the

Cellular heterogeneity plays a pivotal role in a variety of functional processes in vivo including carcinogenesis. However, our knowledge about cell-to-cell diversity and how differences in individual cells manifest in alterations at the population level remains very limited mainly due to the lack of appropriate tools enabling studies at the single-cell level. We present a study on changes in cellular heterogeneity in the context of pre-malignant progression in response to hypoxic stress. Utilizing pre-malignant progression of Barrett’s esophagus (BE) as a disease model system we studied molecular mechanisms underlying the progression from metaplastic to dysplastic (pre-cancerous) stage. We used newly developed methods enabling measurements of cell-to-cell differences in copy numbers of mitochondrial DNA, expression levels of a set of mitochondrial and nuclear genes involved in hypoxia response pathways, and mitochondrial membrane potential. In contrast to bulk cell studies reported earlier, our study shows significant differences between metaplastic and dysplastic BE cells in both average values and single-cell parameter distributions of mtDNA copy numbers, mitochondrial function, and mRNA expression levels of studied genes. Based on single-cell data analysis, we propose that mitochondria may be one of the key factors in pre-malignant progression in BE.

ContributorsWang, Jiangxin (Author) / Shi, Xu (Author) / Johnson, Roger (Author) / Kelbauskas, Laimonas (Author) / Zhang, Weiwen (Author) / Meldrum, Deirdre (Author) / Biodesign Institute (Contributor)
Created2013-10-08
128306-Thumbnail Image.png
Description

The Arctic, even more so than other parts of the world, has warmed substantially over the past few decades. Temperature and humidity influence the rate of development, survival and reproduction of pathogens and thus the incidence and prevalence of many infectious diseases. Higher temperatures may also allow infected host species

The Arctic, even more so than other parts of the world, has warmed substantially over the past few decades. Temperature and humidity influence the rate of development, survival and reproduction of pathogens and thus the incidence and prevalence of many infectious diseases. Higher temperatures may also allow infected host species to survive winters in larger numbers, increase the population size and expand their habitat range. The impact of these changes on human disease in the Arctic has not been fully evaluated. There is concern that climate change may shift the geographic and temporal distribution of a range of infectious diseases. Many infectious diseases are climate sensitive, where their emergence in a region is dependent on climate-related ecological changes. Most are zoonotic diseases, and can be spread between humans and animals by arthropod vectors, water, soil, wild or domestic animals. Potentially climate-sensitive zoonotic pathogens of circumpolar concern include Brucella spp., Toxoplasma gondii, Trichinella spp., Clostridium botulinum, Francisella tularensis, Borrelia burgdorferi, Bacillus anthracis, Echinococcus spp., Leptospira spp., Giardia spp., Cryptosporida spp., Coxiella burnetti, rabies virus, West Nile virus, Hantaviruses, and tick-borne encephalitis viruses.

ContributorsParkinson, Alan J. (Author) / Evengard, Birgitta (Author) / Semenza, Jan C. (Author) / Ogden, Nicholas (Author) / Borresen, Malene L. (Author) / Berner, Jim (Author) / Brubaker, Michael (Author) / Sjostedt, Anders (Author) / Evander, Magnus (Author) / Hondula, David M. (Author) / Menne, Bettina (Author) / Pshenichnaya, Natalia (Author) / Gounder, Prabhu (Author) / Larose, Tricia (Author) / Revich, Boris (Author) / Hueffer, Karsten (Author) / Albihn, Ann (Author) / College of Public Service and Community Solutions (Contributor)
Created2014-09-30
128409-Thumbnail Image.png
Description

Background: Extreme heat is a leading weather-related cause of mortality in the United States, but little guidance is available regarding how temperature variable selection impacts heat–mortality relationships.
Objectives: We examined how the strength of the relationship between daily heat-related mortality and temperature varies as a function of temperature observation time, lag,

Background: Extreme heat is a leading weather-related cause of mortality in the United States, but little guidance is available regarding how temperature variable selection impacts heat–mortality relationships.
Objectives: We examined how the strength of the relationship between daily heat-related mortality and temperature varies as a function of temperature observation time, lag, and calculation method.
Methods: Long time series of daily mortality counts and hourly temperature for seven U.S. cities with different climates were examined using a generalized additive model. The temperature effect was modeled separately for each hour of the day (with up to 3-day lags) along with different methods of calculating daily maximum, minimum, and mean temperature. We estimated the temperature effect on mortality for each variable by comparing the 99th versus 85th temperature percentiles, as determined from the annual time series.

Results: In three northern cities (Boston, MA; Philadelphia, PA; and Seattle, WA) that appeared to have the greatest sensitivity to heat, hourly estimates were consistent with a diurnal pattern in the heat-mortality response, with strongest associations for afternoon or maximum temperature at lag 0 (day of death) or afternoon and evening of lag 1 (day before death). In warmer, southern cities, stronger associations were found with morning temperatures, but overall the relationships were weaker. The strongest temperature–mortality relationships were associated with maximum temperature, although mean temperature results were comparable.

Conclusions: There were systematic and substantial differences in the association between temperature and mortality based on the time and type of temperature observation. Because the strongest hourly temperature–mortality relationships were not always found at times typically associated with daily maximum temperatures, temperature variables should be selected independently for each study location. In general, heat-mortality was more closely coupled to afternoon and maximum temperatures in most cities we examined, particularly those typically prone to heat-related mortality.

Created2015-12-04