This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 21
Filtering by

Clear all filters

141463-Thumbnail Image.png
Description

Five immunocompetent C57BL/6-cBrd/cBrd/Cr (albino C57BL/6) mice were injected with GL261-luc2 cells, a cell line sharing characteristics of human glioblastoma multiforme (GBM). The mice were imaged using magnetic resonance (MR) at five separate time points to characterize growth and development of the tumor. After 25 days, the final tumor volumes of

Five immunocompetent C57BL/6-cBrd/cBrd/Cr (albino C57BL/6) mice were injected with GL261-luc2 cells, a cell line sharing characteristics of human glioblastoma multiforme (GBM). The mice were imaged using magnetic resonance (MR) at five separate time points to characterize growth and development of the tumor. After 25 days, the final tumor volumes of the mice varied from 12 mm3 to 62 mm3, even though mice were inoculated from the same tumor cell line under carefully controlled conditions. We generated hypotheses to explore large variances in final tumor size and tested them with our simple reaction-diffusion model in both a 3-dimensional (3D) finite difference method and a 2-dimensional (2D) level set method. The parameters obtained from a best-fit procedure, designed to yield simulated tumors as close as possible to the observed ones, vary by an order of magnitude between the three mice analyzed in detail. These differences may reflect morphological and biological variability in tumor growth, as well as errors in the mathematical model, perhaps from an oversimplification of the tumor dynamics or nonidentifiability of parameters. Our results generate parameters that match other experimental in vitro and in vivo measurements. Additionally, we calculate wave speed, which matches with other rat and human measurements.

ContributorsRutter, Erica (Author) / Stepien, Tracy (Author) / Anderies, Barrett (Author) / Plasencia, Jonathan (Author) / Woolf, Eric C. (Author) / Scheck, Adrienne C. (Author) / Turner, Gregory H. (Author) / Liu, Qingwei (Author) / Frakes, David (Author) / Kodibagkar, Vikram (Author) / Kuang, Yang (Author) / Preul, Mark C. (Author) / Kostelich, Eric (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-05-31
129538-Thumbnail Image.png
Description

Gompertz’s empirical equation remains the most popular one in describing cancer cell population growth in a wide spectrum of bio-medical situations due to its good fit to data and simplicity. Many efforts were documented in the literature aimed at understanding the mechanisms that may support Gompertz’s elegant model equation. One

Gompertz’s empirical equation remains the most popular one in describing cancer cell population growth in a wide spectrum of bio-medical situations due to its good fit to data and simplicity. Many efforts were documented in the literature aimed at understanding the mechanisms that may support Gompertz’s elegant model equation. One of the most convincing efforts was carried out by Gyllenberg and Webb. They divide the cancer cell population into the proliferative cells and the quiescent cells. In their two dimensional model, the dead cells are assumed to be removed from the tumor instantly. In this paper, we modify their model by keeping track of the dead cells remaining in the tumor. We perform mathematical and computational studies on this three dimensional model and compare the model dynamics to that of the model of Gyllenberg and Webb. Our mathematical findings suggest that if an avascular tumor grows according to our three-compartment model, then as the death rate of quiescent cells decreases to zero, the percentage of proliferative cells also approaches to zero. Moreover, a slow dying quiescent population will increase the size of the tumor. On the other hand, while the tumor size does not depend on the dead cell removal rate, its early and intermediate growth stages are very sensitive to it.

ContributorsAlzahrani, E. O. (Author) / Asiri, Asim (Author) / El-Dessoky, M. M. (Author) / Kuang, Yang (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-08-01
128834-Thumbnail Image.png
Description

Introduction: The ketogenic diet (KD) is a high-fat, low-carbohydrate diet that alters metabolism by increasing the level of ketone bodies in the blood. KetoCal® (KC) is a nutritionally complete, commercially available 4∶1 (fat∶ carbohydrate+protein) ketogenic formula that is an effective non-pharmacologic treatment for the management of refractory pediatric epilepsy. Diet-induced ketosis

Introduction: The ketogenic diet (KD) is a high-fat, low-carbohydrate diet that alters metabolism by increasing the level of ketone bodies in the blood. KetoCal® (KC) is a nutritionally complete, commercially available 4∶1 (fat∶ carbohydrate+protein) ketogenic formula that is an effective non-pharmacologic treatment for the management of refractory pediatric epilepsy. Diet-induced ketosis causes changes to brain homeostasis that have potential for the treatment of other neurological diseases such as malignant gliomas.

Methods: We used an intracranial bioluminescent mouse model of malignant glioma. Following implantation animals were maintained on standard diet (SD) or KC. The mice received 2×4 Gy of whole brain radiation and tumor growth was followed by in vivo imaging.

Results: Animals fed KC had elevated levels of β-hydroxybutyrate (p = 0.0173) and an increased median survival of approximately 5 days relative to animals maintained on SD. KC plus radiation treatment were more than additive, and in 9 of 11 irradiated animals maintained on KC the bioluminescent signal from the tumor cells diminished below the level of detection (p<0.0001). Animals were switched to SD 101 days after implantation and no signs of tumor recurrence were seen for over 200 days.

Conclusions: KC significantly enhances the anti-tumor effect of radiation. This suggests that cellular metabolic alterations induced through KC may be useful as an adjuvant to the current standard of care for the treatment of human malignant gliomas.

ContributorsAbdelwahab, Mohammed G. (Author) / Fenton, Kathryn E. (Author) / Preul, Mark C. (Author) / Rho, Jong M. (Author) / Lynch, Andrew (Author) / Stafford, Phillip (Author) / Scheck, Adrienne C. (Author) / Biodesign Institute (Contributor)
Created2012-05-01
128835-Thumbnail Image.png
Description

Background: The successful treatment of malignant gliomas remains a challenge despite the current standard of care, which consists of surgery, radiation and temozolomide. Advances in the survival of brain cancer patients require the design of new therapeutic approaches that take advantage of common phenotypes such as the altered metabolism found in

Background: The successful treatment of malignant gliomas remains a challenge despite the current standard of care, which consists of surgery, radiation and temozolomide. Advances in the survival of brain cancer patients require the design of new therapeutic approaches that take advantage of common phenotypes such as the altered metabolism found in cancer cells. It has therefore been postulated that the high-fat, low-carbohydrate, adequate protein ketogenic diet (KD) may be useful in the treatment of brain tumors. We have demonstrated that the KD enhances survival and potentiates standard therapy in a mouse model of malignant glioma, yet the mechanisms are not fully understood.

Methods: To explore the effects of the KD on various aspects of tumor growth and progression, we used the immunocompetent, syngeneic GL261-Luc2 mouse model of malignant glioma.

Results: Tumors from animals maintained on KD showed reduced expression of the hypoxia marker carbonic anhydrase 9, hypoxia inducible factor 1-alpha, and decreased activation of nuclear factor kappa B. Additionally, tumors from animals maintained on KD had reduced tumor microvasculature and decreased expression of vascular endothelial growth factor receptor 2, matrix metalloproteinase-2 and vimentin. Peritumoral edema was significantly reduced in animals fed the KD and protein analyses showed altered expression of zona occludens-1 and aquaporin-4.

Conclusions: The KD directly or indirectly alters the expression of several proteins involved in malignant progression and may be a useful tool for the treatment of gliomas.

ContributorsWoolf, Eric (Author) / Curley, Kara L. (Author) / Liu, Qingwei (Author) / Turner, Gregory H. (Author) / Charlton, Julie A. (Author) / Preul, Mark C. (Author) / Scheck, Adrienne C. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-06-17
129012-Thumbnail Image.png
Description

Background: Malignant brain tumors affect people of all ages and are the second leading cause of cancer deaths in children. While current treatments are effective and improve survival, there remains a substantial need for more efficacious therapeutic modalities. The ketogenic diet (KD) - a high-fat, low-carbohydrate treatment for medically refractory epilepsy

Background: Malignant brain tumors affect people of all ages and are the second leading cause of cancer deaths in children. While current treatments are effective and improve survival, there remains a substantial need for more efficacious therapeutic modalities. The ketogenic diet (KD) - a high-fat, low-carbohydrate treatment for medically refractory epilepsy - has been suggested as an alternative strategy to inhibit tumor growth by altering intrinsic metabolism, especially by inducing glycopenia.

Methods: Here, we examined the effects of an experimental KD on a mouse model of glioma, and compared patterns of gene expression in tumors vs. normal brain from animals fed either a KD or a standard diet.

Results: Animals received intracranial injections of bioluminescent GL261-luc cells and tumor growth was followed in vivo. KD treatment significantly reduced the rate of tumor growth and prolonged survival. Further, the KD reduced reactive oxygen species (ROS) production in tumor cells. Gene expression profiling demonstrated that the KD induces an overall reversion to expression patterns seen in non-tumor specimens. Notably, genes involved in modulating ROS levels and oxidative stress were altered, including those encoding cyclooxygenase 2, glutathione peroxidases 3 and 7, and periredoxin 4.

Conclusions: Our data demonstrate that the KD improves survivability in our mouse model of glioma, and suggests that the mechanisms accounting for this protective effect likely involve complex alterations in cellular metabolism beyond simply a reduction in glucose.

ContributorsStafford, Phillip (Author) / Abdelwahab, Mohammed G. (Author) / Kim, Do Young (Author) / Preul, Mark C. (Author) / Rho, Jong M. (Author) / Scheck, Adrienne C. (Author) / Biodesign Institute (Contributor)
Created2010-09-10
127938-Thumbnail Image.png
Description

To build 21st century sustainable cities, officials are installing alternative infrastructure technologies to reduce atmospheric environmental problems such as the urban heat island (UHI). The purpose of this study is to further our understanding of how ground-level UHI mitigation strategies in compact urban areas impact air temperatures. The term ‘cool

To build 21st century sustainable cities, officials are installing alternative infrastructure technologies to reduce atmospheric environmental problems such as the urban heat island (UHI). The purpose of this study is to further our understanding of how ground-level UHI mitigation strategies in compact urban areas impact air temperatures. The term ‘cool pavement’ refers to both reflective and porous pavements. While cool pavements are identified as UHI mitigation strategies, we evaluated their in-situ effectiveness on air and surface temperatures. Using a case-control research design, we measured the impact of these pavements on air temperature relative to conventional asphalt in alleys. In locations where high vertical walls constrained the release of solar radiation, reflective pavements increased air temperatures. In two neighborhoods, reflective concrete increased daytime 3-meter air temperatures by 0.9° C and 0.5° C respectively and had no influence on nighttime temperatures. Unlike reflective pavement, porous pavements permit percolation and may contribute to cooling through evaporation. However, our research illustrated that porous asphalt and porous concrete increased maximum daytime air temperatures by 0.8° C and 0.5° C and did not lower nighttime air temperatures. While porous concrete pavers had significantly warmer midday air temperatures, it was the only cool pavement strategy to yield lower early evening air temperatures relative to conventional asphalt. Even immediately after rain events, the air temperatures above the porous pavements were not significantly cooler. This research demonstrates our need to evaluate real world installations of cool pavement to determine their actual impact on decreasing summertime temperatures.

ContributorsCoseo, Paul (Author) / Larsen, Larissa (Author) / Herberger Institute for Design and the Arts (Contributor)
Created2015-09-14
128044-Thumbnail Image.png
Description
A modified mathematical model describing the human immunodeficiency virus (HIV) pathogenesis with cytotoxic T-lymphocytes (CTL) and infected cells in eclipse phase is presented and studied in this paper. The model under consideration also includes a saturated rate describing viral infection. First, the positivity and boundedness of solutions for nonnegative initial

A modified mathematical model describing the human immunodeficiency virus (HIV) pathogenesis with cytotoxic T-lymphocytes (CTL) and infected cells in eclipse phase is presented and studied in this paper. The model under consideration also includes a saturated rate describing viral infection. First, the positivity and boundedness of solutions for nonnegative initial data are proved. Next, the global stability of the disease free steady state and the endemic steady states are established depending on the basic reproduction number R[subscript 0] and the CTL immune response reproduction number R[subscript CTL]. Moreover, numerical simulations are performed in order to show the numerical stability for each steady state and to support our theoretical findings. Our model based findings suggest that system immunity represented by CTL may control viral replication and reduce the infection.
ContributorsAllali, Karam (Author) / Danane, Jaouad (Author) / Kuang, Yang (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2017-08-21
127911-Thumbnail Image.png
Description

This study dealt with emotional responses elicited by certain products, which helped to understand the attributes of the product leading to emotional responses. Emotional Design is a way of design that is using emotions generated by people as reference and measurement. Making good use of emotional design could let the

This study dealt with emotional responses elicited by certain products, which helped to understand the attributes of the product leading to emotional responses. Emotional Design is a way of design that is using emotions generated by people as reference and measurement. Making good use of emotional design could let the user discover resonance in the interaction between user and product, which could help the product to be more attractive to users. This research proposes to apply qualitative research method to uncover the secrets of emotional bonds between users and products This study also offered an useful tool to examine the strength and weakness of a certain product from perspective of emotion, and the insights could help designers to refine the product to become emotional attractive, thus create better user experience and bigger opportunity for the product on the market in the future.

ContributorsShin, Dosun (Author) / Wang, Zheng (Author) / Herberger Institute for Design and the Arts (Contributor)
Created2015-10-23
127834-Thumbnail Image.png
Description

Communicating climate risks is crucial when engaging the public to support climate action planning and addressing climate justice. How does evidence-based communication influence local residents’ risk perception and potential behavior change in support of climate planning? Built upon our previous study of Climate Justice maps illustrating high scores of both

Communicating climate risks is crucial when engaging the public to support climate action planning and addressing climate justice. How does evidence-based communication influence local residents’ risk perception and potential behavior change in support of climate planning? Built upon our previous study of Climate Justice maps illustrating high scores of both social and ecological vulnerability in Michigan’s Huron River watershed, USA, a quasi-experiment was conducted to examine the effects of Climate Justice mapping intervention on residents’ perceptions and preparedness for climate change associated hazards in Michigan. Two groups were compared: residents in Climate Justice areas with high social and ecological vulnerability scores in the watershed (n=76) and residents in comparison areas in Michigan (n=69). Measurements for risk perception include perceived exposure, sensitivity, and adaptability to hazards. Results indicate that risk information has a significant effect on perceived sensitivity and level of preparedness for future climate extremes among participants living in Climate Justice areas. Findings highlight the value of integrating scientific risk assessment information in risk communication to align calculated and perceived risks. This study suggests effective risk communication can influence local support of climate action plans and implementation of strategies that address climate justice and achieve social sustainability in local communities.

ContributorsCheng, Chingwen (Author) / Tsai, Jiun-Yi (Author) / Yang, Y. C. Ethan (Author) / Esselman, Rebecca (Author) / Kalcic, Margaret (Author) / Xu, Xin (Author) / Mohai, Paul (Author) / Herberger Institute for Design and the Arts (Contributor)
Created2017-10-12
128588-Thumbnail Image.png
Description

Introduction: Fluorescence-guided surgery is one of the rapidly emerging methods of surgical “theranostics.” In this review, we summarize current fluorescence techniques used in neurosurgical practice for brain tumor patients as well as future applications of recent laboratory and translational studies.

Methods: Review of the literature.

Results: A wide spectrum of fluorophores that

Introduction: Fluorescence-guided surgery is one of the rapidly emerging methods of surgical “theranostics.” In this review, we summarize current fluorescence techniques used in neurosurgical practice for brain tumor patients as well as future applications of recent laboratory and translational studies.

Methods: Review of the literature.

Results: A wide spectrum of fluorophores that have been tested for brain surgery is reviewed. Beginning with a fluorescein sodium application in 1948 by Moore, fluorescence-guided brain tumor surgery is either routinely applied in some centers or is under active study in clinical trials. Besides the trinity of commonly used drugs (fluorescein sodium, 5-aminolevulinic acid, and indocyanine green), less studied fluorescent stains, such as tetracyclines, cancer-selective alkylphosphocholine analogs, cresyl violet, acridine orange, and acriflavine, can be used for rapid tumor detection and pathological tissue examination. Other emerging agents, such as activity-based probes and targeted molecular probes that can provide biomolecular specificity for surgical visualization and treatment, are reviewed. Furthermore, we review available engineering and optical solutions for fluorescent surgical visualization. Instruments for fluorescent-guided surgery are divided into wide-field imaging systems and hand-held probes. Recent advancements in quantitative fluorescence-guided surgery are discussed.

Conclusion: We are standing on the threshold of the era of marker-assisted tumor management. Innovations in the fields of surgical optics, computer image analysis, and molecular bioengineering are advancing fluorescence-guided tumor resection paradigms, leading to cell-level approaches to visualization and resection of brain tumors.

Created2016-10-17