This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 30
Filtering by

Clear all filters

141478-Thumbnail Image.png
Description

In this study, we examine how development status and water scarcity shape people's perceptions of "hard path" and "soft path" water solutions. Based on ethnographic research conducted in four semi-rural/peri-urban sites (in Bolivia, Fiji, New Zealand, and the US), we use content analysis to conduct statistical and thematic comparisons of

In this study, we examine how development status and water scarcity shape people's perceptions of "hard path" and "soft path" water solutions. Based on ethnographic research conducted in four semi-rural/peri-urban sites (in Bolivia, Fiji, New Zealand, and the US), we use content analysis to conduct statistical and thematic comparisons of interview data. Our results indicate clear differences associated with development status and, to a lesser extent, water scarcity. People in the two less developed sites were more likely to suggest hard path solutions, less likely to suggest soft path solutions, and more likely to see no path to solutions than people in the more developed sites. Thematically, people in the two less developed sites envisioned solutions that involve small-scale water infrastructure and decentralized, community-based solutions, while people in the more developed sites envisioned solutions that involve large-scale infrastructure and centralized, regulatory water solutions. People in the two water-scarce sites were less likely to suggest soft path solutions and more likely to see no path to solutions (but no more likely to suggest hard path solutions) than people in the water-rich sites. Thematically, people in the two water-rich sites seemed to perceive a wider array of unrealized potential soft path solutions than those in the water-scarce sites. On balance, our findings are encouraging in that they indicate that people are receptive to soft path solutions in a range of sites, even those with limited financial or water resources. Our research points to the need for more studies that investigate the social feasibility of soft path water solutions, particularly in sites with significant financial and natural resource constraints.

ContributorsWutich, Amber (Author) / White, A. C. (Author) / White, Dave (Author) / Larson, Kelli (Author) / Brewis Slade, Alexandra (Author) / Roberts, Christine (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-01-13
162019-Thumbnail Image.png
Description

Cities in the Global South face rapid urbanization challenges and often suffer an acute lack of infrastructure and governance capacities. Smart Cities Mission, in India, launched in 2015, aims to offer a novel approach for urban renewal of 100 cities following an area‐based development approach, where the use of ICT

Cities in the Global South face rapid urbanization challenges and often suffer an acute lack of infrastructure and governance capacities. Smart Cities Mission, in India, launched in 2015, aims to offer a novel approach for urban renewal of 100 cities following an area‐based development approach, where the use of ICT and digital technologies is particularly emphasized. This article presents a critical review of the design and implementation framework of this new urban renewal program across selected case‐study cities. The article examines the claims of the so‐called “smart cities” against actual urban transformation on‐ground and evaluates how “inclusive” and “sustainable” these developments are. We quantify the scale and coverage of the smart city urban renewal projects in the cities to highlight who the program includes and excludes. The article also presents a statistical analysis of the sectoral focus and budgetary allocations of the projects under the Smart Cities Mission to find an inherent bias in these smart city initiatives in terms of which types of development they promote and the ones it ignores. The findings indicate that a predominant emphasis on digital urban renewal of selected precincts and enclaves, branded as “smart cities,” leads to deepening social polarization and gentrification. The article offers crucial urban planning lessons for designing ICT‐driven urban renewal projects, while addressing critical questions around inclusion and sustainability in smart city ventures.`

ContributorsPraharaj, Sarbeswar (Author)
Created2021-05-07
129236-Thumbnail Image.png
Description

Perchloroethylene (PCE) is a highly utilized solvent in the dry cleaning industry because of its cleaning effectiveness and relatively low cost to consumers. According to the 2006 U.S. Census, approximately 28,000 dry cleaning operations used PCE as their principal cleaning agent. Widespread use of PCE is problematic because of its

Perchloroethylene (PCE) is a highly utilized solvent in the dry cleaning industry because of its cleaning effectiveness and relatively low cost to consumers. According to the 2006 U.S. Census, approximately 28,000 dry cleaning operations used PCE as their principal cleaning agent. Widespread use of PCE is problematic because of its adverse impacts on human health and environmental quality. As PCE use is curtailed, effective alternatives must be analyzed for their toxicity and impacts to human health and the environment. Potential alternatives to PCE in dry cleaning include dipropylene glycol n-butyl ether (DPnB) and dipropylene glycol tert-butyl ether (DPtB), both promising to pose a relatively smaller risk. To evaluate these two alternatives to PCE, we established and scored performance criteria, including chemical toxicity, employee and customer exposure levels, impacts on the general population, costs of each system, and cleaning efficacy. The scores received for PCE were 5, 5, 3, 5, 3, and 3, respectively, and DPnB and DPtB scored 3, 1, 2, 2, 4, and 4, respectively. An aggregate sum of the performance criteria yielded a favorably low score of “16” for both DPnB and DPtB compared to “24” for PCE. We conclude that DPnB and DPtB are preferable dry cleaning agents, exhibiting reduced human toxicity and a lesser adverse impact on human health and the environment compared to PCE, with comparable capital investments, and moderately higher annual operating costs.

ContributorsHesari, Nikou (Author) / Francis, Chelsea (Author) / Halden, Rolf (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-04-03
128167-Thumbnail Image.png
Description

Many population centers in the American West rely on water from the Colorado River Basin, which has faced shortages in recent years that are anticipated to be exacerbated by climate change. Shortages to urban water supplies related to climate change will not be limited to cities dependent on the Colorado

Many population centers in the American West rely on water from the Colorado River Basin, which has faced shortages in recent years that are anticipated to be exacerbated by climate change. Shortages to urban water supplies related to climate change will not be limited to cities dependent on the Colorado River. Considering this, addressing sustainable water governance is timely and critical for cities, states, and regions facing supply shortages and pollution problems. Engaging in sustainability transitions of these hydro-social systems will increase the ability of such systems to meet the water needs of urban communities. In this paper, we identify historical transitions in water governance and examine their context for three sites in the Colorado River Basin (Denver, Colorado, Las Vegas, Nevada, and Phoenix, Arizona) to provide insight for intentional transitions towards sustainable, or “water sensitive” cities. The comparative historical approach employed allows us to more fully understand differences in present-day water governance decisions between the sites, identify past catalysts for transitions, and recognize emerging patterns and opportunities that may impact current and future water governance in the Colorado River Basin and beyond.

ContributorsSullivan, Abigail (Author) / White, Dave (Author) / Larson, Kelli (Author) / Wutich, Amber (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2017-05-06
128572-Thumbnail Image.png
Description

We designed and evaluated an active sampling device, using as analytical targets a family of pesticides purported to contribute to honeybee colony collapse disorder. Simultaneous sampling of bulk water and pore water was accomplished using a low-flow, multi-channel pump to deliver water to an array of solid-phase extraction cartridges. Analytes

We designed and evaluated an active sampling device, using as analytical targets a family of pesticides purported to contribute to honeybee colony collapse disorder. Simultaneous sampling of bulk water and pore water was accomplished using a low-flow, multi-channel pump to deliver water to an array of solid-phase extraction cartridges. Analytes were separated using either liquid or gas chromatography, and analysis was performed using tandem mass spectrometry (MS/MS). Achieved recoveries of fipronil and degradates in water spiked to nominal concentrations of 0.1, 1, and 10 ng/L ranged from 77 ± 12 to 110 ± 18%. Method detection limits (MDLs) were as low as 0.040–0.8 ng/L. Extraction and quantitation of total fiproles at a wastewater-receiving wetland yielded concentrations in surface water and pore water ranging from 9.9 ± 4.6 to 18.1 ± 4.6 ng/L and 9.1 ± 3.0 to 12.6 ± 2.1 ng/L, respectively. Detected concentrations were statistically indistinguishable from those determined by conventional, more laborious techniques (p > 0.2 for the three most abundant fiproles). Aside from offering time-averaged sampling capabilities for two phases simultaneously with picogram-per-liter MDLs, the novel methodology eliminates the need for water and sediment transport via in situ solid phase extraction.

ContributorsSupowit, Samuel (Author) / Roll, Isaac (Author) / Dang, Viet D. (Author) / Kroll, Kevin J. (Author) / Denslow, Nancy D. (Author) / Halden, Rolf (Author) / Biodesign Institute (Contributor)
Created2016-02-24
127822-Thumbnail Image.png
Description

Understanding the food-energy-water nexus is necessary to identify risks and inform strategies for nexus governance to support resilient, secure, and sustainable societies. To manage risks and realize efficiencies, we must understand not only how these systems are physically connected but also how they are institutionally linked. It is important to

Understanding the food-energy-water nexus is necessary to identify risks and inform strategies for nexus governance to support resilient, secure, and sustainable societies. To manage risks and realize efficiencies, we must understand not only how these systems are physically connected but also how they are institutionally linked. It is important to understand how actors who make planning, management, and policy decisions understand the relationships among components of the systems. Our question is: How do stakeholders involved in food, energy, and water governance in Phoenix, Arizona understand the nexus and what are the implications for integrated nexus governance? We employ a case study design, generate qualitative data through focus groups and interviews, and conduct a content analysis. While stakeholders in the Phoenix area who are actively engaged in food, energy, and water systems governance appreciate the rationale for nexus thinking, they recognize practical limitations to implementing these concepts. Concept maps of nexus interactions provide one view of system interconnections that be used to complement other ways of knowing the nexus, such as physical infrastructure system diagrams or actor-networks. Stakeholders believe nexus governance could be improved through awareness and education, consensus and collaboration, transparency, economic incentives, working across scales, and incremental reforms.

ContributorsWhite, Dave (Author) / Jones, Jaime (Author) / Maciejewski, Ross (Author) / Aggarwal, Rimjhim (Author) / Mascaro, Giuseppe (Author) / College of Public Service and Community Solutions (Contributor)
Created2017-11-29
127819-Thumbnail Image.png
Description

The Future of Wastewater Sensing workshop is part of a collaboration between Arizona State University Center for Nanotechnology in Society in the School for the Future of Innovation in Society, the Biodesign Institute’s Center for Environmental Security, LC Nano, and the Nano-enabled Water Treatment (NEWT) Systems NSF Engineering Research Center.

The Future of Wastewater Sensing workshop is part of a collaboration between Arizona State University Center for Nanotechnology in Society in the School for the Future of Innovation in Society, the Biodesign Institute’s Center for Environmental Security, LC Nano, and the Nano-enabled Water Treatment (NEWT) Systems NSF Engineering Research Center. The Future of Wastewater Sensing workshop explores how technologies for studying, monitoring, and mining wastewater and sewage sludge might develop in the future, and what consequences may ensue for public health, law enforcement, private industry, regulations and society at large. The workshop pays particular attention to how wastewater sensing (and accompanying research, technologies, and applications) can be innovated, regulated, and used to maximize societal benefit and minimize the risk of adverse outcomes, when addressing critical social and environmental challenges.

ContributorsWithycombe Keeler, Lauren (Researcher) / Halden, Rolf (Researcher) / Selin, Cynthia (Researcher) / Center for Nanotechnology in Society (Contributor)
Created2015-11-01
129255-Thumbnail Image.png
Description

Nanoscale zero-valent iron (nZVI) is a strong nonspecific reducing agent that is used for in situ degradation of chlorinated solvents and other oxidized pollutants. However, there are significant concerns regarding the risks posed by the deliberate release of engineered nanomaterials into the environment, which have triggered moratoria, for example, in

Nanoscale zero-valent iron (nZVI) is a strong nonspecific reducing agent that is used for in situ degradation of chlorinated solvents and other oxidized pollutants. However, there are significant concerns regarding the risks posed by the deliberate release of engineered nanomaterials into the environment, which have triggered moratoria, for example, in the United Kingdom. This critical review focuses on the effect of nZVI injection on subsurface microbial communities, which are of interest due to their important role in contaminant attenuation processes. Corrosion of ZVI stimulates dehalorespiring bacteria, due to the production of H2 that can serve as an electron donor for reduction of chlorinated contaminants. Conversely, laboratory studies show that nZVI can be inhibitory to pure bacterial cultures, although toxicity is reduced when nZVI is coated with polyelectrolytes or natural organic matter. The emerging toolkit of molecular biological analyses should enable a more sophisticated assessment of combined nZVI/biostimulation or bioaugmentation approaches. While further research on the consequences of its application for subsurface microbial communities is needed, nZVI continues to hold promise as an innovative technology for in situ remediation of pollutants It is particularly attractive. for the remediation of subsurface environments containing chlorinated ethenes because of its ability to potentially elicit and sustain both physical–chemical and biological removal despite its documented antimicrobial properties.

ContributorsBruton, Thomas (Author) / Pycke, Benny (Author) / Halden, Rolf (Author) / Biodesign Institute (Contributor)
Created2015-06-03
129661-Thumbnail Image.png
Description

Using liquid chromatography tandem mass spectrometry, we determined the first nationwide inventories of 13 perfluoroalkyl substances (PFASs) in U.S. biosolids via analysis of samples collected by the U.S. Environmental Protection Agency in the 2001 National Sewage Sludge Survey. Perfluorooctane sulfonate [PFOS; 403 +/- 127 ng/g dry weight (dw)] was the

Using liquid chromatography tandem mass spectrometry, we determined the first nationwide inventories of 13 perfluoroalkyl substances (PFASs) in U.S. biosolids via analysis of samples collected by the U.S. Environmental Protection Agency in the 2001 National Sewage Sludge Survey. Perfluorooctane sulfonate [PFOS; 403 +/- 127 ng/g dry weight (dw)] was the most abundant PFAS detected in biosolids composites representing 32 U.S. states and the District of Columbia, followed by perfluorooctanoate [PFOA; 34 +/- 22 ng/g dw] and perfluorodecanoate [PFDA; 26 +/- 20 ng/g dw]. Mean concentrations in U.S. biosolids of the remaining ten PFASs ranged between 2 and 21 ng/g dw. Interestingly, concentrations of PFOS determined here in biosolids collected prior to the phase-out period (2002) were similar to levels reported in the literature for recent years. The mean load of Sigma PFASs in U.S. biosolids was estimated at 2749-3450 kg/year, of which about 1375-2070 kg is applied on agricultural land and 467-587 kg goes to landfills as an alternative disposal route. This study informs the risk assessment of PFASs by furnishing national inventories of PFASs occurrence and environmental release via biosolids application on land.

ContributorsVenkatesan, Arjunkrishna (Author) / Halden, Rolf (Author) / Biodesign Institute (Contributor)
Created2013-09-05
128967-Thumbnail Image.png
Description

Background: Buffering to achieve pH control is crucial for successful trichloroethene (TCE) anaerobic bioremediation. Bicarbonate (HCO3−) is the natural buffer in groundwater and the buffer of choice in the laboratory and at contaminated sites undergoing biological treatment with organohalide respiring microorganisms. However, HCO3− also serves as the electron acceptor for hydrogenotrophic

Background: Buffering to achieve pH control is crucial for successful trichloroethene (TCE) anaerobic bioremediation. Bicarbonate (HCO3−) is the natural buffer in groundwater and the buffer of choice in the laboratory and at contaminated sites undergoing biological treatment with organohalide respiring microorganisms. However, HCO3− also serves as the electron acceptor for hydrogenotrophic methanogens and hydrogenotrophic homoacetogens, two microbial groups competing with organohalide respirers for hydrogen (H2). We studied the effect of HCO3− as a buffering agent and the effect of HCO3−-consuming reactions in a range of concentrations (2.5-30 mM) with an initial pH of 7.5 in H2-fed TCE reductively dechlorinating communities containing Dehalococcoides, hydrogenotrophic methanogens, and hydrogenotrophic homoacetogens.

Results: Rate differences in TCE dechlorination were observed as a result of added varying HCO3− concentrations due to H2-fed electrons channeled towards methanogenesis and homoacetogenesis and pH increases (up to 8.7) from biological HCO3− consumption. Significantly faster dechlorination rates were noted at all HCO3− concentrations tested when the pH buffering was improved by providing 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) as an additional buffer. Electron balances and quantitative PCR revealed that methanogenesis was the main electron sink when the initial HCO3− concentrations were 2.5 and 5 mM, while homoacetogenesis was the dominant process and sink when 10 and 30 mM HCO3− were provided initially.

Conclusions: Our study reveals that HCO3− is an important variable for bioremediation of chloroethenes as it has a prominent role as an electron acceptor for methanogenesis and homoacetogenesis. It also illustrates the changes in rates and extent of reductive dechlorination resulting from the combined effect of electron donor competition stimulated by HCO3− and the changes in pH exerted by methanogens and homoacetogens.

ContributorsDelgado, Anca (Author) / Parameswaran, Prathap (Author) / Fajardo-Williams, Devyn (Author) / Halden, Rolf (Author) / Krajmalnik-Brown, Rosa (Author) / Biodesign Institute (Contributor)
Created2012-09-13