This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 11 - 20 of 27
Filtering by

Clear all filters

128782-Thumbnail Image.png
Description

We sought to evaluate the reproducibility of a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based approach to measure the stable-isotope enrichment of in vivo-labeled muscle ATP synthase β subunit (β-F1-ATPase), a protein most directly involved in ATP production, and whose abundance is reduced under a variety of circumstances. Muscle was obtained from

We sought to evaluate the reproducibility of a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based approach to measure the stable-isotope enrichment of in vivo-labeled muscle ATP synthase β subunit (β-F1-ATPase), a protein most directly involved in ATP production, and whose abundance is reduced under a variety of circumstances. Muscle was obtained from a rat infused with stable-isotope-labeled leucine. The muscle was homogenized, β-F1-ATPase immunoprecipitated, and the protein was resolved using 1D-SDS PAGE. Following trypsin digestion of the isolated protein, the resultant peptide mixtures were subjected to analysis by HPLC-ESI-MS/MS, which resulted in the detection of multiple β-F1-ATPase peptides. There were three β-F1-ATPase unique peptides with a leucine residue in the amino acid sequence, and which were detected with high intensity relative to other peptides and assigned with >95% probability to β-F1-ATPase. These peptides were specifically targeted for fragmentation to access their stable-isotope enrichment based on MS/MS peak areas calculated from extracted ion chromatographs for selected labeled and unlabeled fragment ions. Results showed best linearity (R[superscript 2] = 0.99) in the detection of MS/MS peak areas for both labeled and unlabeled fragment ions, over a wide range of amounts of injected protein, specifically for the β-F1-ATPase[subscript 134-143] peptide. Measured stable-isotope enrichment was highly reproducible for the β-F1-ATPase[subscript 134-143] peptide (CV = 2.9%). Further, using mixtures of synthetic labeled and unlabeled peptides we determined that there is an excellent linear relationship (R[superscript 2] = 0.99) between measured and predicted enrichment for percent enrichments ranging between 0.009% and 8.185% for the β-F1-ATPase[subscript 134-143] peptide. The described approach provides a reliable approach to measure the stable-isotope enrichment of in-vivo-labeled muscle β-F1-ATPase based on the determination of the enrichment of the β-F1-ATPase[subscript 134-143] peptide.

ContributorsEverman, Sarah (Author) / Yi, Zhengping (Author) / Langlais, Paul (Author) / Mandarino, Lawrence (Author) / Luo, Moulun (Author) / Roberts, Christine (Author) / Katsanos, Christos (Author) / College of Health Solutions (Contributor)
Created2011-10-12
128981-Thumbnail Image.png
Description

Background: Although the effect of the fat mass and obesity-associated (FTO) gene on adiposity is well established, there is a lack of evidence whether physical activity (PA) modifies the effect of FTO variants on obesity in Latino populations. Therefore, the purpose of this study was to examine PA influences and interactive

Background: Although the effect of the fat mass and obesity-associated (FTO) gene on adiposity is well established, there is a lack of evidence whether physical activity (PA) modifies the effect of FTO variants on obesity in Latino populations. Therefore, the purpose of this study was to examine PA influences and interactive effects between FTO variants and PA on measures of adiposity in Latinos.

Results: After controlling for age and sex, participants who did not engage in regular PA exhibited higher BMI, fat mass, HC, and WC with statistical significance (P < 0.001). Although significant associations between the three FTO genotypes and adiposity measures were found, none of the FTO genotype by PA interaction assessments revealed nominally significant associations. However, several of such interactive influences exhibited considerable trend towards association.

Conclusions: These data suggest that adiposity measures are associated with PA and FTO variants in Latinos, but the impact of their interactive influences on these obesity measures appear to be minimal. Future studies with large sample sizes may help to determine whether individuals with specific FTO variants exhibit differential responses to PA interventions.

ContributorsKim, Joon Young (Author) / DeMenna, Jacob (Author) / Puppala, Sobha (Author) / Chittoor, Geetha (Author) / Schneider, Jennifer (Author) / Duggirala, Ravindranath (Author) / Mandarino, Lawrence (Author) / Shaibi, Gabriel (Author) / Coletta, Dawn (Author) / College of Health Solutions (Contributor)
Created2016-02-24
129255-Thumbnail Image.png
Description

Nanoscale zero-valent iron (nZVI) is a strong nonspecific reducing agent that is used for in situ degradation of chlorinated solvents and other oxidized pollutants. However, there are significant concerns regarding the risks posed by the deliberate release of engineered nanomaterials into the environment, which have triggered moratoria, for example, in

Nanoscale zero-valent iron (nZVI) is a strong nonspecific reducing agent that is used for in situ degradation of chlorinated solvents and other oxidized pollutants. However, there are significant concerns regarding the risks posed by the deliberate release of engineered nanomaterials into the environment, which have triggered moratoria, for example, in the United Kingdom. This critical review focuses on the effect of nZVI injection on subsurface microbial communities, which are of interest due to their important role in contaminant attenuation processes. Corrosion of ZVI stimulates dehalorespiring bacteria, due to the production of H2 that can serve as an electron donor for reduction of chlorinated contaminants. Conversely, laboratory studies show that nZVI can be inhibitory to pure bacterial cultures, although toxicity is reduced when nZVI is coated with polyelectrolytes or natural organic matter. The emerging toolkit of molecular biological analyses should enable a more sophisticated assessment of combined nZVI/biostimulation or bioaugmentation approaches. While further research on the consequences of its application for subsurface microbial communities is needed, nZVI continues to hold promise as an innovative technology for in situ remediation of pollutants It is particularly attractive. for the remediation of subsurface environments containing chlorinated ethenes because of its ability to potentially elicit and sustain both physical–chemical and biological removal despite its documented antimicrobial properties.

ContributorsBruton, Thomas (Author) / Pycke, Benny (Author) / Halden, Rolf (Author) / Biodesign Institute (Contributor)
Created2015-06-03
129661-Thumbnail Image.png
Description

Using liquid chromatography tandem mass spectrometry, we determined the first nationwide inventories of 13 perfluoroalkyl substances (PFASs) in U.S. biosolids via analysis of samples collected by the U.S. Environmental Protection Agency in the 2001 National Sewage Sludge Survey. Perfluorooctane sulfonate [PFOS; 403 +/- 127 ng/g dry weight (dw)] was the

Using liquid chromatography tandem mass spectrometry, we determined the first nationwide inventories of 13 perfluoroalkyl substances (PFASs) in U.S. biosolids via analysis of samples collected by the U.S. Environmental Protection Agency in the 2001 National Sewage Sludge Survey. Perfluorooctane sulfonate [PFOS; 403 +/- 127 ng/g dry weight (dw)] was the most abundant PFAS detected in biosolids composites representing 32 U.S. states and the District of Columbia, followed by perfluorooctanoate [PFOA; 34 +/- 22 ng/g dw] and perfluorodecanoate [PFDA; 26 +/- 20 ng/g dw]. Mean concentrations in U.S. biosolids of the remaining ten PFASs ranged between 2 and 21 ng/g dw. Interestingly, concentrations of PFOS determined here in biosolids collected prior to the phase-out period (2002) were similar to levels reported in the literature for recent years. The mean load of Sigma PFASs in U.S. biosolids was estimated at 2749-3450 kg/year, of which about 1375-2070 kg is applied on agricultural land and 467-587 kg goes to landfills as an alternative disposal route. This study informs the risk assessment of PFASs by furnishing national inventories of PFASs occurrence and environmental release via biosolids application on land.

ContributorsVenkatesan, Arjunkrishna (Author) / Halden, Rolf (Author) / Biodesign Institute (Contributor)
Created2013-09-05
128922-Thumbnail Image.png
Description

Introduction: Decreased insulin sensitivity blunts the normal increase in gene expression from skeletal muscle after exercise. In addition, chronic inflammation decreases insulin sensitivity. Chronic kidney disease (CKD) is an inflammatory state. How CKD and, subsequently, kidney transplantation affects skeletal muscle gene expression after exercise are unknown.

Methods: Study cohort: non-diabetic male/female 4/1, age

Introduction: Decreased insulin sensitivity blunts the normal increase in gene expression from skeletal muscle after exercise. In addition, chronic inflammation decreases insulin sensitivity. Chronic kidney disease (CKD) is an inflammatory state. How CKD and, subsequently, kidney transplantation affects skeletal muscle gene expression after exercise are unknown.

Methods: Study cohort: non-diabetic male/female 4/1, age 52±2 years, with end-stage CKD who underwent successful kidney transplantation. The following were measured both pre-transplant and post-transplant and compared to normals: Inflammatory markers, euglycemic insulin clamp studies determine insulin sensitivity, and skeletal muscle biopsies performed before and within 30 minutes after an acute exercise protocol. Microarray analyses were performed on the skeletal muscle using the 4x44K Whole Human Genome Microarrays. Since nuclear factor of activated T cells (NFAT) plays an important role in T cell activation and calcineurin inhibitors are mainstay immunosuppression, calcineurin/NFAT pathway gene expression was compared at rest and after exercise. Log transformation was performed to prevent skewing of data and regression analyses comparing measures pre- and post-transplant performed.

Result: Markers of inflammation significantly improved post-transplantation. Insulin infusion raised glucose disposal slightly lower post-transplant compared to pre-transplant, but not significantly, thus concluding differences in insulin sensitivity were similar. The overall pattern of gene expression in response to exercise was reduced both pre-and post-transplant compared to healthy volunteers. Although significant changes were observed among NFAT/Calcineurin gene at rest and after exercise in normal cohort, there were no significant differences comparing NFAT/calcineurin pathway gene expression pre- and post-transplant.

Conclusions: Despite an improvement in serum inflammatory markers, no significant differences in glucose disposal were observed post-transplant. The reduced skeletal muscle gene expression, including NFAT/calcineurin gene expression, in response to a single bout of exercise was not improved post-transplant. This study suggests that the improvements in inflammatory mediators post-transplant are unrelated to changes of NFAT/calcineurin gene expression.

ContributorsColetta, Dawn (Author) / Campbell, Latoya (Author) / Well, Jennifer (Author) / Kaplan, Bruce (Author) / Clarkson, Marie (Author) / Finlayson, Jean (Author) / Mandarino, Lawrence (Author) / Chakkera, Harini A. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-08-12
128899-Thumbnail Image.png
Description

Background: Plasma branched-chain amino acids (BCAA) are inversely related to insulin sensitivity of glucose metabolism in humans. However, currently, it is not known whether there is a cause-and-effect relationship between increased plasma BCAA concentrations and decreased insulin sensitivity.

Objective: To determine the effects of acute exposure to increased plasma BCAA concentrations on insulin-mediated

Background: Plasma branched-chain amino acids (BCAA) are inversely related to insulin sensitivity of glucose metabolism in humans. However, currently, it is not known whether there is a cause-and-effect relationship between increased plasma BCAA concentrations and decreased insulin sensitivity.

Objective: To determine the effects of acute exposure to increased plasma BCAA concentrations on insulin-mediated plasma glucose turnover in humans.

Methods: Ten healthy subjects were randomly assigned to an experiment where insulin was infused at 40 mU/m2/min (40U) during the second half of a 6-hour intravenous infusion of a BCAA mixture (i.e., BCAA; N = 5) to stimulate plasma glucose turnover or under the same conditions without BCAA infusion (Control; N = 5). In a separate experiment, seven healthy subjects were randomly assigned to receive insulin infusion at 80 mU/m2/min (80U) in association with the above BCAA infusion (N = 4) or under the same conditions without BCAA infusion (N = 3). Plasma glucose turnover was measured prior to and during insulin infusion.

Results: Insulin infusion completely suppressed the endogenous glucose production (EGP) across all groups. The percent suppression of EGP was not different between Control and BCAA in either the 40U or 80U experiments (P > 0.05). Insulin infusion stimulated whole-body glucose disposal rate (GDR) across all groups. However, the increase (%) in GDR was not different [median (1st quartile – 3rd quartile)] between Control and BCAA in either the 40U ([199 (167–278) vs. 186 (94–308)] or 80 U ([491 (414–548) vs. 478 (409–857)] experiments (P > 0.05). Likewise, insulin stimulated the glucose metabolic clearance in all experiments (P < 0.05) with no differences between Control and BCAA in either of the experiments (P > 0.05).

ContributorsEverman, Sarah (Author) / Mandarino, Lawrence (Author) / Carroll, Chad C. (Author) / Katsanos, Christos (Author) / College of Health Solutions (Contributor)
Created2015-03-17
128873-Thumbnail Image.png
Description

Background: Healthy individuals on the lower end of the insulin sensitivity spectrum also have a reduced gene expression response to exercise for specific genes. The goal of this study was to determine the relationship between insulin sensitivity and exercise-induced gene expression in an unbiased, global manner.

Methods and Findings: Euglycemic clamps were used

Background: Healthy individuals on the lower end of the insulin sensitivity spectrum also have a reduced gene expression response to exercise for specific genes. The goal of this study was to determine the relationship between insulin sensitivity and exercise-induced gene expression in an unbiased, global manner.

Methods and Findings: Euglycemic clamps were used to measure insulin sensitivity and muscle biopsies were done at rest and 30 minutes after a single acute exercise bout in 14 healthy participants. Changes in mRNA expression were assessed using microarrays, and miRNA analysis was performed in a subset of 6 of the participants using sequencing techniques. Following exercise, 215 mRNAs were changed at the probe level (Bonferroni-corrected P<0.00000115). Pathway and Gene Ontology analysis showed enrichment in MAP kinase signaling, transcriptional regulation and DNA binding. Changes in several transcription factor mRNAs were correlated with insulin sensitivity, including MYC, r=0.71; SNF1LK, r=0.69; and ATF3, r= 0.61 (5 corrected for false discovery rate). Enrichment in the 5’-UTRs of exercise-responsive genes suggested regulation by common transcription factors, especially EGR1. miRNA species of interest that changed after exercise included miR-378, which is located in an intron of the PPARGC1B gene.

Conclusions: These results indicate that transcription factor gene expression responses to exercise depend highly on insulin sensitivity in healthy people. The overall pattern suggests a coordinated cycle by which exercise and insulin sensitivity regulate gene expression in muscle.

ContributorsMcLean, Carrie (Author) / Mielke, Clinton (Author) / Cordova, Jeanine (Author) / Langlais, Paul R. (Author) / Bowen, Benjamin (Author) / Miranda, Danielle (Author) / Coletta, Dawn (Author) / Mandarino, Lawrence (Author) / College of Health Solutions (Contributor)
Created2015-05-18
128967-Thumbnail Image.png
Description

Background: Buffering to achieve pH control is crucial for successful trichloroethene (TCE) anaerobic bioremediation. Bicarbonate (HCO3−) is the natural buffer in groundwater and the buffer of choice in the laboratory and at contaminated sites undergoing biological treatment with organohalide respiring microorganisms. However, HCO3− also serves as the electron acceptor for hydrogenotrophic

Background: Buffering to achieve pH control is crucial for successful trichloroethene (TCE) anaerobic bioremediation. Bicarbonate (HCO3−) is the natural buffer in groundwater and the buffer of choice in the laboratory and at contaminated sites undergoing biological treatment with organohalide respiring microorganisms. However, HCO3− also serves as the electron acceptor for hydrogenotrophic methanogens and hydrogenotrophic homoacetogens, two microbial groups competing with organohalide respirers for hydrogen (H2). We studied the effect of HCO3− as a buffering agent and the effect of HCO3−-consuming reactions in a range of concentrations (2.5-30 mM) with an initial pH of 7.5 in H2-fed TCE reductively dechlorinating communities containing Dehalococcoides, hydrogenotrophic methanogens, and hydrogenotrophic homoacetogens.

Results: Rate differences in TCE dechlorination were observed as a result of added varying HCO3− concentrations due to H2-fed electrons channeled towards methanogenesis and homoacetogenesis and pH increases (up to 8.7) from biological HCO3− consumption. Significantly faster dechlorination rates were noted at all HCO3− concentrations tested when the pH buffering was improved by providing 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) as an additional buffer. Electron balances and quantitative PCR revealed that methanogenesis was the main electron sink when the initial HCO3− concentrations were 2.5 and 5 mM, while homoacetogenesis was the dominant process and sink when 10 and 30 mM HCO3− were provided initially.

Conclusions: Our study reveals that HCO3− is an important variable for bioremediation of chloroethenes as it has a prominent role as an electron acceptor for methanogenesis and homoacetogenesis. It also illustrates the changes in rates and extent of reductive dechlorination resulting from the combined effect of electron donor competition stimulated by HCO3− and the changes in pH exerted by methanogens and homoacetogens.

ContributorsDelgado, Anca (Author) / Parameswaran, Prathap (Author) / Fajardo-Williams, Devyn (Author) / Halden, Rolf (Author) / Krajmalnik-Brown, Rosa (Author) / Biodesign Institute (Contributor)
Created2012-09-13
128672-Thumbnail Image.png
Description

The known occurrence of pharmaceuticals in the built and natural water environment, including in drinking water supplies, continues to raise concerns over inadvertent exposures and associated potential health risks in humans and aquatic organisms. At the same time, the number and concentrations of new and existing pharmaceuticals in the water

The known occurrence of pharmaceuticals in the built and natural water environment, including in drinking water supplies, continues to raise concerns over inadvertent exposures and associated potential health risks in humans and aquatic organisms. At the same time, the number and concentrations of new and existing pharmaceuticals in the water environment are destined to increase further in the future as a result of increased consumption of pharmaceuticals by a growing and aging population and ongoing measures to decrease per-capita water consumption. This review examines the occurrence and movement of pharmaceuticals in the built and natural water environment, with special emphasis on contamination of the drinking water supply, and opportunities for sustainable pollution control. We surveyed peer-reviewed publications dealing with quantitative measurements of pharmaceuticals in U.S. drinking water, surface water, groundwater, raw and treated wastewater as well as municipal biosolids. Pharmaceuticals have been observed to reenter the built water environment contained in raw drinking water, and they remain detectable in finished drinking water at concentrations in the ng/L to μg/L range. The greatest promises for minimizing pharmaceutical contamination include source control (for example, inputs from intentional flushing of medications for safe disposal, and sewer overflows), and improving efficiency of treatment facilities.

ContributorsDeo, Randhir P. (Author) / Halden, Rolf (Author) / Biodesign Institute (Contributor)
Created2013-09-11
128412-Thumbnail Image.png
Description

Background: Methylmercury (MeHg) may affect fetal growth; however, prior research often lacked assessment of mercury speciation, confounders, and interactions.

Objective: Our objective was to assess the relationship between MeHg and fetal growth as well as the potential for confounding or interaction of this relationship from speciated mercury, fatty acids, selenium, and

Background: Methylmercury (MeHg) may affect fetal growth; however, prior research often lacked assessment of mercury speciation, confounders, and interactions.

Objective: Our objective was to assess the relationship between MeHg and fetal growth as well as the potential for confounding or interaction of this relationship from speciated mercury, fatty acids, selenium, and sex.

Methods: This cross-sectional study includes 271 singletons born in Baltimore, Maryland, 2004–2005. Umbilical cord blood was analyzed for speciated mercury, serum omega-3 highly unsaturated fatty acids (n-3 HUFAs), and selenium. Multivariable linear regression models controlled for gestational age, birth weight, maternal age, parity, pre-pregnancy body mass index, smoking, hypertension, diabetes, selenium, n-3 HUFAs, and inorganic mercury (IHg).

Results: Geometric mean cord blood MeHg was 0.94 μg/L (95% CI: 0.84, 1.07). In adjusted models for ponderal index, βln(MeHg) = –0.045 (g/cm[superscript 3]) × 100 (95% CI: –0.084, –0.005). There was no evidence of a MeHg × sex interaction with ponderal index. Contrastingly, there was evidence of a MeHg × n-3 HUFAs interaction with birth length [among low n-3 HUFAs, βln(MeHg) = 0.40 cm, 95% CI: –0.02, 0.81; among high n-3 HUFAs, βln(MeHg) = –0.15, 95% CI: –0.54, 0.25; p-interaction = 0.048] and head circumference [among low n-3 HUFAs, βln(MeHg) = 0.01 cm, 95% CI: –0.27, 0.29; among high n-3 HUFAs, βln(MeHg) = –0.37, 95% CI: –0.63, –0.10; p-interaction = 0.042]. The association of MeHg with birth weight and ponderal index was affected by n-3 HUFAs, selenium, and IHg. For birth weight, βln(MeHg) without these variables was –16.8 g (95% CI: –75.0, 41.3) versus –29.7 (95% CI: –93.9, 34.6) with all covariates. Corresponding values for ponderal index were –0.030 (g/cm[superscript 3]) × 100 (95% CI: –0.065, 0.005) and –0.045 (95% CI: –0.084, –0005).

Conclusion: We observed an association of increased MeHg with decreased ponderal index. There is evidence for interaction between MeHg and n-3 HUFAs; infants with higher MeHg and n-3 HUFAs had lower birth length and head circumference. These results should be verified with additional studies.

ContributorsWells, Ellen M. (Author) / Herbstman, Julie B. (Author) / Lin, Yu Hong (Author) / Jarrett, Jeffery (Author) / Verdon, Carl P. (Author) / Ward, Cynthia (Author) / Caldwell, Kathleen L. (Author) / Hibbeln, Joseph R. (Author) / Witter, Frank R. (Author) / Halden, Rolf (Author) / Goldman, Lynn R. (Author) / Biodesign Institute (Contributor)
Created2016-06-26