This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 38
Filtering by

Clear all filters

129570-Thumbnail Image.png
Description

Land-use mapping is critical for global change research. In Central Arizona, U.S.A., the spatial distribution of land use is important for sustainable land management decisions. The objective of this study was to create a land-use map that serves as a model for the city of Maricopa, an expanding urban region

Land-use mapping is critical for global change research. In Central Arizona, U.S.A., the spatial distribution of land use is important for sustainable land management decisions. The objective of this study was to create a land-use map that serves as a model for the city of Maricopa, an expanding urban region in the Sun Corridor of Arizona. We use object-based image analysis to map six land-use types from ASTER imagery, and then compare this with two per-pixel classifications. Our results show that a single segmentation, combined with intermediary classifications and merging, morphing, and growing image-objects, can lead to an accurate land-use map that is capable of utilizing both spatial and spectral information. We also employ a moving-window diversity assessment to help with analysis and improve post-classification modifications.

ContributorsGalletti, Christopher (Author) / Myint, Soe (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-07-01
129537-Thumbnail Image.png
Description

There are many proteomic applications that require large collections of purified protein, but parallel production of large numbers of different proteins remains a very challenging task. To help meet the needs of the scientific community, we have developed a human protein production pipeline. Using high-throughput (HT) methods, we transferred the

There are many proteomic applications that require large collections of purified protein, but parallel production of large numbers of different proteins remains a very challenging task. To help meet the needs of the scientific community, we have developed a human protein production pipeline. Using high-throughput (HT) methods, we transferred the genes of 31 full-length proteins into three expression vectors, and expressed the collection as N-terminal HaloTag fusion proteins in Escherichia coli and two commercial cell-free (CF) systems, wheat germ extract (WGE) and HeLa cell extract (HCE). Expression was assessed by labeling the fusion proteins specifically and covalently with a fluorescent HaloTag ligand and detecting its fluorescence on a LabChip[superscript ®] GX microfluidic capillary gel electrophoresis instrument. This automated, HT assay provided both qualitative and quantitative assessment of recombinant protein. E. coli was only capable of expressing 20% of the test collection in the supernatant fraction with ≥20 μg yields, whereas CF systems had ≥83% success rates. We purified expressed proteins using an automated HaloTag purification method. We purified 20, 33, and 42% of the test collection from E. coli, WGE, and HCE, respectively, with yields ≥1 μg and ≥90% purity. Based on these observations, we have developed a triage strategy for producing full-length human proteins in these three expression systems.

ContributorsSaul, Justin (Author) / Petritis, Brianne (Author) / Sau, Sujay (Author) / Rauf, Femina (Author) / Gaskin, Michael (Author) / Ober-Reynolds, Benjamin (Author) / Mineyev, Irina (Author) / Magee, Mitch (Author) / Chaput, John (Author) / Qiu, Ji (Author) / LaBaer, Joshua (Author) / Biodesign Institute (Contributor)
Created2014-08-01
Description

Throughout the long history of virus-host co-evolution, viruses have developed delicate strategies to facilitate their invasion and replication of their genome, while silencing the host immune responses through various mechanisms. The systematic characterization of viral protein-host interactions would yield invaluable information in the understanding of viral invasion/evasion, diagnosis and therapeutic

Throughout the long history of virus-host co-evolution, viruses have developed delicate strategies to facilitate their invasion and replication of their genome, while silencing the host immune responses through various mechanisms. The systematic characterization of viral protein-host interactions would yield invaluable information in the understanding of viral invasion/evasion, diagnosis and therapeutic treatment of a viral infection, and mechanisms of host biology. With more than 2,000 viral genomes sequenced, only a small percent of them are well investigated. The access of these viral open reading frames (ORFs) in a flexible cloning format would greatly facilitate both in vitro and in vivo virus-host interaction studies. However, the overall progress of viral ORF cloning has been slow. To facilitate viral studies, we are releasing the initiation of our panviral proteome collection of 2,035 ORF clones from 830 viral genes in the Gateway® recombinational cloning system. Here, we demonstrate several uses of our viral collection including highly efficient production of viral proteins using human cell-free expression system in vitro, global identification of host targets for rubella virus using Nucleic Acid Programmable Protein Arrays (NAPPA) containing 10,000 unique human proteins, and detection of host serological responses using micro-fluidic multiplexed immunoassays. The studies presented here begin to elucidate host-viral protein interactions with our systemic utilization of viral ORFs, high-throughput cloning, and proteomic technologies. These valuable plasmid resources will be available to the research community to enable continued viral functional studies.

ContributorsYu, Xiaobo (Author) / Bian, Xiaofang (Author) / Throop, Andrea (Author) / Song, Lusheng (Author) / del Moral, Lerys (Author) / Park, Jin (Author) / Seiler, Catherine (Author) / Fiacco, Michael (Author) / Steel, Jason (Author) / Hunter, Preston (Author) / Saul, Justin (Author) / Wang, Jie (Author) / Qiu, Ji (Author) / Pipas, James M. (Author) / LaBaer, Joshua (Author) / Biodesign Institute (Contributor)
Created2013-11-30
129278-Thumbnail Image.png
Description

We report a device to fill an array of small chemical reaction chambers (microreactors) with reagent and then seal them using pressurized viscous liquid acting through a flexible membrane. The device enables multiple, independent chemical reactions involving free floating intermediate molecules without interference from neighboring reactions or external environments. The

We report a device to fill an array of small chemical reaction chambers (microreactors) with reagent and then seal them using pressurized viscous liquid acting through a flexible membrane. The device enables multiple, independent chemical reactions involving free floating intermediate molecules without interference from neighboring reactions or external environments. The device is validated by protein expressed in situ directly from DNA in a microarray of ~10,000 spots with no diffusion during three hours incubation. Using the device to probe for an autoantibody cancer biomarker in blood serum sample gave five times higher signal to background ratio compared to standard protein microarray expressed on a flat microscope slide. Physical design principles to effectively fill the array of microreactors with reagent and experimental results of alternate methods for sealing the microreactors are presented.

ContributorsWiktor, Peter (Author) / Brunner, Al (Author) / Kahn, Peter (Author) / Qiu, Ji (Author) / Magee, Mitch (Author) / Bian, Xiaofang (Author) / Karthikeyan, Kailash (Author) / LaBaer, Joshua (Author) / Biodesign Institute (Contributor)
Created2015-03-04
129287-Thumbnail Image.png
Description

The phenomenon of Fano resonance is ubiquitous in a large variety of wave scattering systems, where the resonance profile is typically asymmetric. Whether the parameter characterizing the asymmetry should be complex or real is an issue of great experimental interest. Using coherent quantum transport as a paradigm and taking into

The phenomenon of Fano resonance is ubiquitous in a large variety of wave scattering systems, where the resonance profile is typically asymmetric. Whether the parameter characterizing the asymmetry should be complex or real is an issue of great experimental interest. Using coherent quantum transport as a paradigm and taking into account of the collective contribution from all available scattering channels, we derive a universal formula for the Fano-resonance profile. We show that our formula bridges naturally the traditional Fano formulas with complex and real asymmetry parameters, indicating that the two types of formulas are fundamentally equivalent (except for an offset). The connection also reveals a clear footprint for the conductance resonance during a dephasing process. Therefore, the emergence of complex asymmetric parameter when fitting with experimental data needs to be properly interpreted. Furthermore, we have provided a theory for the width of the resonance, which relates explicitly the width to the degree of localization of the close-by eigenstates and the corresponding coupling matrices or the self-energies caused by the leads. Our work not only resolves the issue about the nature of the asymmetry parameter, but also provides deeper physical insights into the origin of Fano resonance. Since the only assumption in our treatment is that the transport can be described by the Green’s function formalism, our results are also valid for broad disciplines including scattering problems of electromagnetic waves, acoustics, and seismology.

ContributorsHuang, Liang (Author) / Lai, Ying-Cheng (Author) / Luo, Hong-Gang (Author) / Grebogi, Celso (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-01
129298-Thumbnail Image.png
Description

Persistent currents (PCs), one of the most intriguing manifestations of the Aharonov-Bohm (AB) effect, are known to vanish for Schrödinger particles in the presence of random scatterings, e.g., due to classical chaos. But would this still be the case for Dirac fermions? Addressing this question is of significant value due

Persistent currents (PCs), one of the most intriguing manifestations of the Aharonov-Bohm (AB) effect, are known to vanish for Schrödinger particles in the presence of random scatterings, e.g., due to classical chaos. But would this still be the case for Dirac fermions? Addressing this question is of significant value due to the tremendous recent interest in two-dimensional Dirac materials. We investigate relativistic quantum AB rings threaded by a magnetic flux and find that PCs are extremely robust. Even for highly asymmetric rings that host fully developed classical chaos, the amplitudes of PCs are of the same order of magnitude as those for integrable rings, henceforth the term superpersistent currents (SPCs). A striking finding is that the SPCs can be attributed to a robust type of relativistic quantum states, i.e., Dirac whispering gallery modes (WGMs) that carry large angular momenta and travel along the boundaries. We propose an experimental scheme using topological insulators to observe and characterize Dirac WGMs and SPCs, and speculate that these features can potentially be the base for a new class of relativistic qubit systems. Our discovery of WGMs in relativistic quantum systems is remarkable because, although WGMs are common in photonic systems, they are relatively rare in electronic systems.

ContributorsXu, Hongya (Author) / Huang, Liang (Author) / Lai, Ying-Cheng (Author) / Grebogi, Celso (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-03-11
129310-Thumbnail Image.png
Description

Sera from patients with ovarian cancer contain autoantibodies (AAb) to tumor-derived proteins that are potential biomarkers for early detection. To detect AAb, we probed high-density programmable protein microarrays (NAPPA) expressing 5177 candidate tumor antigens with sera from patients with serous ovarian cancer (n = 34 cases/30 controls) and measured bound

Sera from patients with ovarian cancer contain autoantibodies (AAb) to tumor-derived proteins that are potential biomarkers for early detection. To detect AAb, we probed high-density programmable protein microarrays (NAPPA) expressing 5177 candidate tumor antigens with sera from patients with serous ovarian cancer (n = 34 cases/30 controls) and measured bound IgG. Of these, 741 antigens were selected and probed with an independent set of ovarian cancer sera (n = 60 cases/60 controls). Twelve potential autoantigens were identified with sensitivities ranging from 13 to 22% at >93% specificity. These were retested using a Luminex bead array using 60 cases and 60 controls, with sensitivities ranging from 0 to 31.7% at 95% specificity. Three AAb (p53, PTPRA, and PTGFR) had area under the curve (AUC) levels >60% (p < 0.01), with the partial AUC (SPAUC) over 5 times greater than for a nondiscriminating test (p < 0.01). Using a panel of the top three AAb (p53, PTPRA, and PTGFR), if at least two AAb were positive, then the sensitivity was 23.3% at 98.3% specificity. AAb to at least one of these top three antigens were also detected in 7/20 sera (35%) of patients with low CA 125 levels and 0/15 controls. AAb to p53, PTPRA, and PTGFR are potential biomarkers for the early detection of ovarian cancer.

ContributorsAnderson, Karen (Author) / Cramer, Daniel W. (Author) / Sibani, Sahar (Author) / Wallstrom, Garrick (Author) / Wong, Jessica (Author) / Park, Jin (Author) / Qiu, Ji (Author) / Vitonis, Allison (Author) / LaBaer, Joshua (Author) / Biodesign Institute (Contributor)
Created2015-01-01
128782-Thumbnail Image.png
Description

We sought to evaluate the reproducibility of a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based approach to measure the stable-isotope enrichment of in vivo-labeled muscle ATP synthase β subunit (β-F1-ATPase), a protein most directly involved in ATP production, and whose abundance is reduced under a variety of circumstances. Muscle was obtained from

We sought to evaluate the reproducibility of a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based approach to measure the stable-isotope enrichment of in vivo-labeled muscle ATP synthase β subunit (β-F1-ATPase), a protein most directly involved in ATP production, and whose abundance is reduced under a variety of circumstances. Muscle was obtained from a rat infused with stable-isotope-labeled leucine. The muscle was homogenized, β-F1-ATPase immunoprecipitated, and the protein was resolved using 1D-SDS PAGE. Following trypsin digestion of the isolated protein, the resultant peptide mixtures were subjected to analysis by HPLC-ESI-MS/MS, which resulted in the detection of multiple β-F1-ATPase peptides. There were three β-F1-ATPase unique peptides with a leucine residue in the amino acid sequence, and which were detected with high intensity relative to other peptides and assigned with >95% probability to β-F1-ATPase. These peptides were specifically targeted for fragmentation to access their stable-isotope enrichment based on MS/MS peak areas calculated from extracted ion chromatographs for selected labeled and unlabeled fragment ions. Results showed best linearity (R[superscript 2] = 0.99) in the detection of MS/MS peak areas for both labeled and unlabeled fragment ions, over a wide range of amounts of injected protein, specifically for the β-F1-ATPase[subscript 134-143] peptide. Measured stable-isotope enrichment was highly reproducible for the β-F1-ATPase[subscript 134-143] peptide (CV = 2.9%). Further, using mixtures of synthetic labeled and unlabeled peptides we determined that there is an excellent linear relationship (R[superscript 2] = 0.99) between measured and predicted enrichment for percent enrichments ranging between 0.009% and 8.185% for the β-F1-ATPase[subscript 134-143] peptide. The described approach provides a reliable approach to measure the stable-isotope enrichment of in-vivo-labeled muscle β-F1-ATPase based on the determination of the enrichment of the β-F1-ATPase[subscript 134-143] peptide.

ContributorsEverman, Sarah (Author) / Yi, Zhengping (Author) / Langlais, Paul (Author) / Mandarino, Lawrence (Author) / Luo, Moulun (Author) / Roberts, Christine (Author) / Katsanos, Christos (Author) / College of Health Solutions (Contributor)
Created2011-10-12
128873-Thumbnail Image.png
Description

Background: Healthy individuals on the lower end of the insulin sensitivity spectrum also have a reduced gene expression response to exercise for specific genes. The goal of this study was to determine the relationship between insulin sensitivity and exercise-induced gene expression in an unbiased, global manner.

Methods and Findings: Euglycemic clamps were used

Background: Healthy individuals on the lower end of the insulin sensitivity spectrum also have a reduced gene expression response to exercise for specific genes. The goal of this study was to determine the relationship between insulin sensitivity and exercise-induced gene expression in an unbiased, global manner.

Methods and Findings: Euglycemic clamps were used to measure insulin sensitivity and muscle biopsies were done at rest and 30 minutes after a single acute exercise bout in 14 healthy participants. Changes in mRNA expression were assessed using microarrays, and miRNA analysis was performed in a subset of 6 of the participants using sequencing techniques. Following exercise, 215 mRNAs were changed at the probe level (Bonferroni-corrected P<0.00000115). Pathway and Gene Ontology analysis showed enrichment in MAP kinase signaling, transcriptional regulation and DNA binding. Changes in several transcription factor mRNAs were correlated with insulin sensitivity, including MYC, r=0.71; SNF1LK, r=0.69; and ATF3, r= 0.61 (5 corrected for false discovery rate). Enrichment in the 5’-UTRs of exercise-responsive genes suggested regulation by common transcription factors, especially EGR1. miRNA species of interest that changed after exercise included miR-378, which is located in an intron of the PPARGC1B gene.

Conclusions: These results indicate that transcription factor gene expression responses to exercise depend highly on insulin sensitivity in healthy people. The overall pattern suggests a coordinated cycle by which exercise and insulin sensitivity regulate gene expression in muscle.

ContributorsMcLean, Carrie (Author) / Mielke, Clinton (Author) / Cordova, Jeanine (Author) / Langlais, Paul R. (Author) / Bowen, Benjamin (Author) / Miranda, Danielle (Author) / Coletta, Dawn (Author) / Mandarino, Lawrence (Author) / College of Health Solutions (Contributor)
Created2015-05-18
128737-Thumbnail Image.png
Description

Although insulin resistance in skeletal muscle is well-characterized, the role of circulating whole blood in the metabolic syndrome phenotype is not well understood. We set out to test the hypothesis that genes involved in inflammation, insulin signaling and mitochondrial function would be altered in expression in the whole blood of

Although insulin resistance in skeletal muscle is well-characterized, the role of circulating whole blood in the metabolic syndrome phenotype is not well understood. We set out to test the hypothesis that genes involved in inflammation, insulin signaling and mitochondrial function would be altered in expression in the whole blood of individuals with metabolic syndrome. We further wanted to examine whether similar relationships that we have found previously in skeletal muscle exist in peripheral whole blood cells. All subjects (n=184) were Latino descent from the Arizona Insulin Resistance registry. Subjects were classified based on the metabolic syndrome phenotype according to the National Cholesterol Education Program’s Adult Treatment Panel III. Of the 184 Latino subjects in the study, 74 were classified with the metabolic syndrome and 110 were without. Whole blood gene expression profiling was performed using the Agilent 4x44K Whole Human Genome Microarray. Whole blood microarray analysis identified 1,432 probes that were altered in expression ≥1.2 fold and P<0.05 after Benjamini-Hochberg in the metabolic syndrome subjects. KEGG pathway analysis revealed significant enrichment for pathways including ribosome, oxidative phosphorylation and MAPK signaling (all Benjamini-Hochberg P<0.05). Whole blood mRNA expression changes observed in the microarray data were confirmed by quantitative RT-PCR. Transcription factor binding motif enrichment analysis revealed E2F1, ELK1, NF-kappaB, STAT1 and STAT3 significantly enriched after Bonferroni correction (all P<0.05). The results of the present study demonstrate that whole blood is a useful tissue for studying the metabolic syndrome and its underlying insulin resistance although the relationship between blood and skeletal muscle differs.

ContributorsTangen, Samantha (Author) / Tsinajinnie, Darwin (Author) / Nunez, Martha (Author) / Shaibi, Gabriel (Author) / Mandarino, Lawrence (Author) / Coletta, Dawn (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-12-17