This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 28
Filtering by

Clear all filters

Does School Participatory Budgeting Increase Students’ Political Efficacy? Bandura’s “Sources,” Civic Pedagogy, and Education for Democracy
Description

Does school participatory budgeting (SPB) increase students’ political efficacy? SPB, which is implemented in thousands of schools around the world, is a democratic process of deliberation and decision-making in which students determine how to spend a portion of the school’s budget. We examined the impact of SPB on political efficacy

Does school participatory budgeting (SPB) increase students’ political efficacy? SPB, which is implemented in thousands of schools around the world, is a democratic process of deliberation and decision-making in which students determine how to spend a portion of the school’s budget. We examined the impact of SPB on political efficacy in one middle school in Arizona. Our participants’ (n = 28) responses on survey items designed to measure self-perceived growth in political efficacy indicated a large effect size (Cohen’s d = 1.46), suggesting that SPB is an effective approach to civic pedagogy, with promising prospects for developing students’ political efficacy.

ContributorsGibbs, Norman P. (Author) / Bartlett, Tara Lynn (Author) / Schugurensky, Daniel, 1958- (Author)
Created2021-05-01
190499-Thumbnail Image.png
Description

The impact of undergraduate research experiences (UREs) is supported by evidence from physical and life science fields, especially when student-apprentices work in traditional laboratories. Within social sciences specifically, some excellent student outcomes associated with UREs adhere to non–lab-based modalities like course-based research experiences (CUREs). Here, the authors evaluate the laboratory-based undergraduate research experiences (LUREs) as a potentially valuable

The impact of undergraduate research experiences (UREs) is supported by evidence from physical and life science fields, especially when student-apprentices work in traditional laboratories. Within social sciences specifically, some excellent student outcomes associated with UREs adhere to non–lab-based modalities like course-based research experiences (CUREs). Here, the authors evaluate the laboratory-based undergraduate research experiences (LUREs) as a potentially valuable approach for incorporating social science undergraduates in research. Using comparative analysis of survey data from students completing three types of social science-based UREs (n = 235), individual research experiences (IREs), CUREs, or LUREs, students perceived gains overall regardless of the type of experience, with some indication that LUREs are the most effective.

ContributorsRuth, Alissa (Author) / Brewis, Alexandra (Author) / Beresford, Melissa (Author) / Smith, Michael E. (Author) / Stojanowski, Christopher (Author) / Wutich, Amber (Author)
Created2023-11-13
129245-Thumbnail Image.png
Description

We investigate near-field radiative heat transfer between Indium Tin Oxide (ITO) nanowire arrays which behave as type 1 and 2 hyperbolic metamaterials. Using spatial dispersion dependent effective medium theory to model the dielectric function of the nanowires, the impact of filling fraction on the heat transfer is analyzed. Depending on

We investigate near-field radiative heat transfer between Indium Tin Oxide (ITO) nanowire arrays which behave as type 1 and 2 hyperbolic metamaterials. Using spatial dispersion dependent effective medium theory to model the dielectric function of the nanowires, the impact of filling fraction on the heat transfer is analyzed. Depending on the filling fraction, it is possible to achieve both types of hyperbolic modes. At 150 nm vacuum gap, the heat transfer between the nanowires with 0.5 filling fraction can be 11 times higher than that between two bulk ITOs. For vacuum gaps less than 150 nm the heat transfer increases as the filling fraction decreases. Results obtained from this study will facilitate applications of ITO nanowires as hyperbolic metamaterials for energy systems.

ContributorsChang, Jui-Yung (Author) / Basu, Soumyadipta (Author) / Wang, Liping (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-02-07
129292-Thumbnail Image.png
Description

A film-coupled metamaterial structure is numerically investigated for enhancing the light absorption in an ultrathin photovoltaic layer of crystalline gallium arsenide (GaAs). The top subwavelength concave grating and the bottom metallic film could not only effectively trap light with the help of wave interference and magnetic resonance effects excited above

A film-coupled metamaterial structure is numerically investigated for enhancing the light absorption in an ultrathin photovoltaic layer of crystalline gallium arsenide (GaAs). The top subwavelength concave grating and the bottom metallic film could not only effectively trap light with the help of wave interference and magnetic resonance effects excited above the bandgap, but also practically serve as electrical contacts for photon-generated charge collection. The energy absorbed by the active layer is greatly enhanced with the help of the film-coupled metamaterial structure, resulting in significant improvement on the short-circuit current density by three times over a free-standing GaAs layer at the same thickness. The performance of the proposed light trapping structure is demonstrated to be little affected by the grating ridge width considering the geometric tolerance during fabrication. The optical absorption at oblique incidences also shows direction-insensitive behavior, which is highly desired for efficiently converting off-normal sunlight to electricity. The results would facilitate the development of next-generation ultrathin solar cells with lower cost and higher efficiency.

ContributorsWang, Hao (Author) / Wang, Liping (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-02-01
129432-Thumbnail Image.png
Description

In this work, we report the design of a wavelength-tunable infrared metamaterial by tailoring magnetic resonance condition with the phase transition of vanadium dioxide (VO2). Numerical simulation based on the finite-difference time-domain method shows a broad absorption peak at the wavelength of 10.9 μm when VO2 is a metal, but it

In this work, we report the design of a wavelength-tunable infrared metamaterial by tailoring magnetic resonance condition with the phase transition of vanadium dioxide (VO2). Numerical simulation based on the finite-difference time-domain method shows a broad absorption peak at the wavelength of 10.9 μm when VO2 is a metal, but it shifts to 15.1 μm when VO2 changes to dielectric phase below its phase transition temperature of 68 °C. The large tunability of 38.5% in the resonance wavelength stems from the different excitation conditions of magnetic resonance mediated by plasmon in metallic VO2 but optical phonons in dielectric VO2. The physical mechanism is elucidated with the aid of electromagnetic field distribution at the resonance wavelengths. A hybrid magnetic resonance mode due to the plasmon-phonon coupling is also discussed. The results here would be beneficial for active control of thermal radiation in novel electronic, optical, and thermal devices.

ContributorsWang, Hao (Author) / Yang, Yue (Author) / Wang, Liping (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-09-28
129206-Thumbnail Image.png
Description

Vertebrates cannot synthesize carotenoid pigments de novo, so to produce carotenoid-based coloration they must ingest carotenoids. Most songbirds that deposit red carotenoids in feathers, bills, eyes, or skin ingest only yellow or orange dietary pigments, which they oxidize to red pigments via a ketolation reaction. It has been hypothesized that

Vertebrates cannot synthesize carotenoid pigments de novo, so to produce carotenoid-based coloration they must ingest carotenoids. Most songbirds that deposit red carotenoids in feathers, bills, eyes, or skin ingest only yellow or orange dietary pigments, which they oxidize to red pigments via a ketolation reaction. It has been hypothesized that carotenoid ketolation occurs in the liver of vertebrates, but this hypothesis remains to be confirmed. To better understand the role of hepatocytes in the production of ketolated carotenoids in songbirds, we measured the carotenoid content of subcellular components of hepatocytes from wild male house finches (Haemorhous mexicanus) that were molting red, ketocarotenoid-containing feathers (e.g., 3-hydroxy-echinenone). We homogenized freshly collected livers of house finches and isolated subcellular fractions, including mitochondria. We found the highest concentration of ketocarotenoids in the mitochondrial fraction. These observations are consistent with the hypothesis that carotenoid pigments are oxidized on or within hepatic mitochondria, esterified, and then transported to the Golgi apparatus for secretory processing.

ContributorsGe, Zhiyuan (Author) / Johnson, James D. (Author) / Cobine, Paul A. (Author) / McGraw, Kevin (Author) / Garcia, Rosana (Author) / Hill, Geoffrey E. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-07-01
129006-Thumbnail Image.png
Description

Background: The coevolution of male traits and female mate preferences has led to the elaboration and diversification of sexually selected traits; however the mechanisms that mediate trait-preference coevolution are largely unknown. Carotenoid acquisition and accumulation are key determinants of the expression of male sexually selected carotenoid-based coloration and a primary mechanism

Background: The coevolution of male traits and female mate preferences has led to the elaboration and diversification of sexually selected traits; however the mechanisms that mediate trait-preference coevolution are largely unknown. Carotenoid acquisition and accumulation are key determinants of the expression of male sexually selected carotenoid-based coloration and a primary mechanism maintaining the honest information content of these signals. Carotenoids also influence female health and reproduction in ways that may alter the costs and benefits of mate choice behaviors and thus provide a potential biochemical link between the expression of male traits and female preferences. To test this hypothesis, we manipulated the dietary carotenoid levels of captive female house finches (Carpodacus mexicanus) and assessed their mate choice behavior in response to color-manipulated male finches.

Results: Females preferred to associate with red males, but carotenoid supplementation did not influence the direction or strength of this preference. Females receiving a low-carotenoid diet were less responsive to males in general, and discrimination among the colorful males was positively linked to female plasma carotenoid levels at the beginning of the study when the diet of all birds was carotenoid-limited.

Conclusions: Although female preference for red males was not influenced by carotenoid intake, changes in mating responsiveness and discrimination linked to female carotenoid status may alter how this preference is translated into choice. The reddest males, with the most carotenoid rich plumage, tend to pair early in the breeding season. If carotenoid-related variations in female choice behavior shift the timing of pairing, then they have the potential to promote assortative mating by carotenoid status and drive the evolution of carotenoid-based male plumage coloration.

ContributorsToomey, Matthew (Author) / McGraw, Kevin (Author) / College of Liberal Arts and Sciences (Contributor)
Created2012-01-10
129055-Thumbnail Image.png
Description

Background: Diet-derived carotenoid pigments are concentrated in the retinas of birds and serve a variety of functions, including photoprotection. In domesticated bird species (e.g., chickens and quail), retinal carotenoid pigmentation has been shown to respond to large manipulations in light exposure and provide protection against photodamage. However, it is not known

Background: Diet-derived carotenoid pigments are concentrated in the retinas of birds and serve a variety of functions, including photoprotection. In domesticated bird species (e.g., chickens and quail), retinal carotenoid pigmentation has been shown to respond to large manipulations in light exposure and provide protection against photodamage. However, it is not known if or how wild birds respond to ecologically relevant variation in sun exposure.

Methods: We manipulated the duration of natural sunlight exposure and dietary carotenoid levels in wild-caught captive House Finches (Haemorhous mexicanus), then measured carotenoid accumulation and oxidative stress in the retina.

Results: We found no significant effects of sun exposure on retinal levels of carotenoids or lipid peroxidation, in replicate experiments, in winter (Jan–Mar) and spring/summer (May–June). Dietary carotenoid supplementation in the spring/summer experiment led to significantly higher retinal carotenoid levels, but did not affect lipid peroxidation. Carotenoid levels differed significantly between the winter and spring/summer experiments, with higher retinal and lower plasma carotenoid levels in birds from the later experiment.

Conclusion: Our results suggest that variation in the duration of exposure to direct sunlight have limited influence on intraspecific variation in retinal carotenoid accumulation, but that accumulation may track other seasonal–environmental cues and physiological processes.

ContributorsToomey, Matthew (Author) / McGraw, Kevin (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-03-29
129060-Thumbnail Image.png
Description

Introduction: Nutrient availability, assimilation, and allocation can have important and lasting effects on the immune system development of growing animals. Though carotenoid pigments have immunostimulatory properties in many animals, relatively little is known regarding how they influence the immune system during development. Moreover, studies linking carotenoids to health at any life

Introduction: Nutrient availability, assimilation, and allocation can have important and lasting effects on the immune system development of growing animals. Though carotenoid pigments have immunostimulatory properties in many animals, relatively little is known regarding how they influence the immune system during development. Moreover, studies linking carotenoids to health at any life stage have largely been restricted to birds and mammals. We investigated the effects of carotenoid supplementation on multiple aspects of immunity in juvenile veiled chameleons (Chamaeleo calyptratus). We supplemented half of the chameleons with lutein (a xanthophyll carotenoid) for 14 weeks during development and serially measured multiple aspects of immune function, including: agglutination and lysis performance of plasma, wound healing, and plasma nitric oxide concentrations before and after wounding.

Results: Though lutein supplementation effectively elevated circulating carotenoid concentrations throughout the developmental period, we found no evidence that carotenoid repletion enhanced immune function at any point. However, agglutination and lysis scores increased, while baseline nitric oxide levels decreased, as chameleons aged.

Conclusions: Taken together, our results indicate that body mass and age, but not carotenoid access, may play an important role in immune performance of growing chameleons. Hence, studying well-understood physiological processes in novel taxa can provide new perspectives on alternative physiological processes and nutrient function.

ContributorsMcCartney, Kristen (Author) / Ligon, Russell (Author) / Butler, Michael (Author) / DeNardo, Dale (Author) / McGraw, Kevin (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-03-22
129169-Thumbnail Image.png
Description

In this work, we numerically demonstrate an infrared (IR) frequency-tunable selective thermal emitter made of graphene-covered silicon carbide (SiC) gratings. Rigorous coupled-wave analysis shows temporally-coherent emission peaks associated with magnetic polariton (MP), whose resonance frequency can be dynamically tuned within the phonon absorption band of SiC by varying graphene chemical

In this work, we numerically demonstrate an infrared (IR) frequency-tunable selective thermal emitter made of graphene-covered silicon carbide (SiC) gratings. Rigorous coupled-wave analysis shows temporally-coherent emission peaks associated with magnetic polariton (MP), whose resonance frequency can be dynamically tuned within the phonon absorption band of SiC by varying graphene chemical potential. An analytical inductor–capacitor circuit model is introduced to quantitatively predict the resonance frequency and further elucidate the mechanism for the tunable emission peak. The effects of grating geometric parameters, such as grating height, groove width and grating period, on the selective emission peak are explored. The direction-independent behavior of MP and associated coherent emission are also demonstrated. Moreover, by depositing four layers of graphene sheets onto the SiC gratings, a large tunability of 8.5% in peak frequency can be obtained to yield the coherent emission covering a broad frequency range from 820 to 890 cm-1. The novel tunable metamaterial could pave the way to a new class of tunable thermal sources in the IR region.

ContributorsWang, Hao (Author) / Yang, Yue (Author) / Wang, Liping (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-04-01