This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 39
Filtering by

Clear all filters

Does School Participatory Budgeting Increase Students’ Political Efficacy? Bandura’s “Sources,” Civic Pedagogy, and Education for Democracy
Description

Does school participatory budgeting (SPB) increase students’ political efficacy? SPB, which is implemented in thousands of schools around the world, is a democratic process of deliberation and decision-making in which students determine how to spend a portion of the school’s budget. We examined the impact of SPB on political efficacy

Does school participatory budgeting (SPB) increase students’ political efficacy? SPB, which is implemented in thousands of schools around the world, is a democratic process of deliberation and decision-making in which students determine how to spend a portion of the school’s budget. We examined the impact of SPB on political efficacy in one middle school in Arizona. Our participants’ (n = 28) responses on survey items designed to measure self-perceived growth in political efficacy indicated a large effect size (Cohen’s d = 1.46), suggesting that SPB is an effective approach to civic pedagogy, with promising prospects for developing students’ political efficacy.

ContributorsGibbs, Norman P. (Author) / Bartlett, Tara Lynn (Author) / Schugurensky, Daniel, 1958- (Author)
Created2021-05-01
141475-Thumbnail Image.png
Description

The evolution of cooperation is a fundamental problem in biology, especially for non-relatives, where indirect fitness benefits cannot counter within-group inequalities. Multilevel selection models show how cooperation can evolve if it generates a group-level advantage, even when cooperators are disadvantaged within their group. This allows the possibility of group selection,

The evolution of cooperation is a fundamental problem in biology, especially for non-relatives, where indirect fitness benefits cannot counter within-group inequalities. Multilevel selection models show how cooperation can evolve if it generates a group-level advantage, even when cooperators are disadvantaged within their group. This allows the possibility of group selection, but few examples have been described in nature. Here we show that group selection can explain the evolution of cooperative nest founding in the harvester ant Pogonomyrmex californicus. Through most of this species’ range, colonies are founded by single queens, but in some populations nests are instead founded by cooperative groups of unrelated queens. In mixed groups of cooperative and single-founding queens, we found that aggressive individuals had a survival advantage within their nest, but foundress groups with such non-cooperators died out more often than those with only cooperative members. An agent-based model shows that the between-group advantage of the cooperative phenotype drives it to fixation, despite its within-group disadvantage, but only when population density is high enough to make between-group competition intense. Field data show higher nest density in a population where cooperative founding is common, consistent with greater density driving the evolution of cooperative foundation through group selection.

ContributorsShaffer, Zachary (Author) / Sasaki, Takao (Author) / Haney, Brian (Author) / Janssen, Marco (Author) / Pratt, Stephen (Author) / Fewell, Jennifer (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-07-28
129358-Thumbnail Image.png
Description

We use an agent-based model to analyze the effects of spatial heterogeneity and agents’ mobility on social-ecological outcomes. Our model is a stylized representation of a dynamic population of agents moving and harvesting a renewable resource. Cooperators (agents who harvest an amount close to the maximum sustainable yield) and selfish

We use an agent-based model to analyze the effects of spatial heterogeneity and agents’ mobility on social-ecological outcomes. Our model is a stylized representation of a dynamic population of agents moving and harvesting a renewable resource. Cooperators (agents who harvest an amount close to the maximum sustainable yield) and selfish agents (those who harvest an amount greater than the sustainable yield) are simulated in the model. Three indicators of the outcomes of the system are analyzed: the number of settlements, the resource level, and the proportion of cooperators in the population. Our paper adds a more realistic approach to previous studies on the evolution of cooperation by considering a social-ecological system in which agents move in a landscape to harvest a renewable resource. Our results conclude that resource dynamics play an important role when studying levels of cooperation and resource use. Our simulations show that the agents’ mobility significantly affects the outcomes of the system. This response is nonlinear and very sensible to the type of spatial distribution of the resource richness. In our simulations, better outcomes of long-term sustainability of the resource are obtained with moderate agent mobility and cooperation is enhanced in harsh environments with low resource level in which cooperative groups have natural boundaries fostered by agents’ low mobility.

ContributorsPerez, Irene (Author) / Janssen, Marco (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-01-24
129236-Thumbnail Image.png
Description

Perchloroethylene (PCE) is a highly utilized solvent in the dry cleaning industry because of its cleaning effectiveness and relatively low cost to consumers. According to the 2006 U.S. Census, approximately 28,000 dry cleaning operations used PCE as their principal cleaning agent. Widespread use of PCE is problematic because of its

Perchloroethylene (PCE) is a highly utilized solvent in the dry cleaning industry because of its cleaning effectiveness and relatively low cost to consumers. According to the 2006 U.S. Census, approximately 28,000 dry cleaning operations used PCE as their principal cleaning agent. Widespread use of PCE is problematic because of its adverse impacts on human health and environmental quality. As PCE use is curtailed, effective alternatives must be analyzed for their toxicity and impacts to human health and the environment. Potential alternatives to PCE in dry cleaning include dipropylene glycol n-butyl ether (DPnB) and dipropylene glycol tert-butyl ether (DPtB), both promising to pose a relatively smaller risk. To evaluate these two alternatives to PCE, we established and scored performance criteria, including chemical toxicity, employee and customer exposure levels, impacts on the general population, costs of each system, and cleaning efficacy. The scores received for PCE were 5, 5, 3, 5, 3, and 3, respectively, and DPnB and DPtB scored 3, 1, 2, 2, 4, and 4, respectively. An aggregate sum of the performance criteria yielded a favorably low score of “16” for both DPnB and DPtB compared to “24” for PCE. We conclude that DPnB and DPtB are preferable dry cleaning agents, exhibiting reduced human toxicity and a lesser adverse impact on human health and the environment compared to PCE, with comparable capital investments, and moderately higher annual operating costs.

ContributorsHesari, Nikou (Author) / Francis, Chelsea (Author) / Halden, Rolf (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-04-03
129248-Thumbnail Image.png
Description

During the last 40 years evidence from systematic case study analysis and behavioral experiments have provided a comprehensive perspective on how communities can manage common resources in a sustainable way. The conventional theory based on selfish rational actors cannot explain empirical observations. A more comprehensive theoretical framework of human behavior

During the last 40 years evidence from systematic case study analysis and behavioral experiments have provided a comprehensive perspective on how communities can manage common resources in a sustainable way. The conventional theory based on selfish rational actors cannot explain empirical observations. A more comprehensive theoretical framework of human behavior is emerging that include concepts such as trust, conditional cooperation, other-regarding preferences, social norms, and reputation. The new behavioral perspective also demonstrates that behavioral responses depend on social and biophysical context.

Created2015-02-01
129255-Thumbnail Image.png
Description

Nanoscale zero-valent iron (nZVI) is a strong nonspecific reducing agent that is used for in situ degradation of chlorinated solvents and other oxidized pollutants. However, there are significant concerns regarding the risks posed by the deliberate release of engineered nanomaterials into the environment, which have triggered moratoria, for example, in

Nanoscale zero-valent iron (nZVI) is a strong nonspecific reducing agent that is used for in situ degradation of chlorinated solvents and other oxidized pollutants. However, there are significant concerns regarding the risks posed by the deliberate release of engineered nanomaterials into the environment, which have triggered moratoria, for example, in the United Kingdom. This critical review focuses on the effect of nZVI injection on subsurface microbial communities, which are of interest due to their important role in contaminant attenuation processes. Corrosion of ZVI stimulates dehalorespiring bacteria, due to the production of H2 that can serve as an electron donor for reduction of chlorinated contaminants. Conversely, laboratory studies show that nZVI can be inhibitory to pure bacterial cultures, although toxicity is reduced when nZVI is coated with polyelectrolytes or natural organic matter. The emerging toolkit of molecular biological analyses should enable a more sophisticated assessment of combined nZVI/biostimulation or bioaugmentation approaches. While further research on the consequences of its application for subsurface microbial communities is needed, nZVI continues to hold promise as an innovative technology for in situ remediation of pollutants It is particularly attractive. for the remediation of subsurface environments containing chlorinated ethenes because of its ability to potentially elicit and sustain both physical–chemical and biological removal despite its documented antimicrobial properties.

ContributorsBruton, Thomas (Author) / Pycke, Benny (Author) / Halden, Rolf (Author) / Biodesign Institute (Contributor)
Created2015-06-03
129423-Thumbnail Image.png
Description

Recently, there has been an increased interest in using behavioral experiments to study hypotheses on the governance of social-ecological systems. A diversity of software tools are used to implement such experiments. We evaluated various publicly available platforms that could be used in research and education on the governance of social-ecological

Recently, there has been an increased interest in using behavioral experiments to study hypotheses on the governance of social-ecological systems. A diversity of software tools are used to implement such experiments. We evaluated various publicly available platforms that could be used in research and education on the governance of social-ecological systems. The aims of the various platforms are distinct, and this is noticeable in the differences in their user-friendliness and their adaptability to novel research questions. The more easily accessible platforms are useful for prototyping experiments and for educational purposes to illustrate theoretical concepts. To advance novel research aims, more elaborate programming experience is required to either implement an experiment from scratch or adjust existing experimental software. There is no ideal platform best suited for all possible use cases, but we have provided a menu of options and their associated trade-offs.

Created2013-11-30
129434-Thumbnail Image.png
Description

Aquaculture production has nearly tripled in the last two decades, bringing with it a significant increase in the use of antibiotics. Using liquid chromatography/tandem mass spectrometry (LC–MS/MS), the presence of 47 antibiotics was investigated in U.S. purchased shrimp, salmon, catfish, trout, tilapia, and swai originating from 11 different countries. All

Aquaculture production has nearly tripled in the last two decades, bringing with it a significant increase in the use of antibiotics. Using liquid chromatography/tandem mass spectrometry (LC–MS/MS), the presence of 47 antibiotics was investigated in U.S. purchased shrimp, salmon, catfish, trout, tilapia, and swai originating from 11 different countries. All samples (n = 27) complied with U.S. FDA regulations and five antibiotics were detected above the limits of detection: oxytetracycline (in wild shrimp, 7.7 ng/g of fresh weight; farmed tilapia, 2.7; farmed salmon, 8.6; farmed trout with spinal deformities, 3.9), 4-epioxytetracycline (farmed salmon, 4.1), sulfadimethoxine (farmed shrimp, 0.3), ormetoprim (farmed salmon, 0.5), and virginiamycin (farmed salmon marketed as antibiotic-free, 5.2). A literature review showed that sub-regulatory levels of antibiotics, as found here, can promote resistance development; publications linking aquaculture to this have increased more than 8-fold from 1991 to 2013. Although this study was limited in size and employed sample pooling, it represents the largest reconnaissance of antibiotics in U.S. seafood to date, providing data on previously unmonitored antibiotics and on farmed trout with spinal deformities. Results indicate low levels of antibiotic residues and general compliance with U.S. regulations. The potential for development of microbial drug resistance was identified as a key concern and research priority.

ContributorsDone, Hansa (Author) / Halden, Rolf (Author) / Biodesign Institute (Contributor)
Created2015-01-23
129443-Thumbnail Image.png
Description

Allowing resource users to communicate in behavioural experiments on commons dilemmas increases the level of cooperation. In actual common pool resource dilemmas in the real world, communication is costly, which is an important detail missing from most typical experiments. We conducted experiments where participants must give up harvesting opportunities to

Allowing resource users to communicate in behavioural experiments on commons dilemmas increases the level of cooperation. In actual common pool resource dilemmas in the real world, communication is costly, which is an important detail missing from most typical experiments. We conducted experiments where participants must give up harvesting opportunities to communicate. The constrained communication treatment is compared with the effect of limited information about the state of the resource and the actions of the other participants. We find that despite making communication costly, performance of groups improves in all treatments with communication. We also find that constraining communication has a more significant effect than limiting information on the performance of groups.

ContributorsJanssen, Marco (Author) / Tyson, Madeline (Author) / Lee, Allen (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-11-30
129197-Thumbnail Image.png
Description

The land, water, and energy requirements of hydroponics were compared to those of conventional agriculture by example of lettuce production in Yuma, Arizona, USA. Data were obtained from crop budgets and governmental agricultural statistics, and contrasted with theoretical data for hydroponic lettuce production derived by using engineering equations populated with

The land, water, and energy requirements of hydroponics were compared to those of conventional agriculture by example of lettuce production in Yuma, Arizona, USA. Data were obtained from crop budgets and governmental agricultural statistics, and contrasted with theoretical data for hydroponic lettuce production derived by using engineering equations populated with literature values. Yields of lettuce per greenhouse unit (815 m(2)) of 41 +/- 6.1 kg/m(2)/y had water and energy demands of 20 +/- 3.8 L/kg/y and 90,000 +/- 11,000 kJ/kg/y (+/- standard deviation), respectively. In comparison, conventional production yielded 3.9 +/- 0.21 kg/m(2)/y of produce, with water and energy demands of 250 +/- 25 L/kg/y and 1100 +/- 75 kJ/kg/y, respectively. Hydroponics offered 11 +/- 1.7 times higher yields but required 82 +/- 11 times more energy compared to conventionally produced lettuce. To the authors' knowledge, this is the first quantitative comparison of conventional and hydroponic produce production by example of lettuce grown in the southwestern United States. It identified energy availability as a major factor in assessing the sustainability of hydroponics, and it points to water-scarce settings offering an abundance of renewable energy (e.g., from solar, geothermal, or wind power) as particularly attractive regions for hydroponic agriculture.

ContributorsBarbosa, Guilherme Lages (Author) / Gadelha, Francisca Daiane Almeida (Author) / Kublik, Natalya (Author) / Proctor, Alan (Author) / Reichelm, Lucas (Author) / Weissinger, Emily (Author) / Wohlleb, Gregory (Author) / Halden, Rolf (Author) / Biodesign Institute (Contributor)
Created2015-06-01