This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 21
Filtering by

Clear all filters

128586-Thumbnail Image.png
Description

The heterocyclic indole-alkaloid scytonemin is a sunscreen found exclusively among cyanobacteria. An 18-gene cluster is responsible for scytonemin production in Nostoc punctiforme ATCC 29133. The upstream genes scyABCDEF in the cluster are proposed to be responsible for scytonemin biosynthesis from aromatic amino acid substrates. In vitro studies of ScyA, ScyB,

The heterocyclic indole-alkaloid scytonemin is a sunscreen found exclusively among cyanobacteria. An 18-gene cluster is responsible for scytonemin production in Nostoc punctiforme ATCC 29133. The upstream genes scyABCDEF in the cluster are proposed to be responsible for scytonemin biosynthesis from aromatic amino acid substrates. In vitro studies of ScyA, ScyB, and ScyC proved that these enzymes indeed catalyze initial pathway reactions. Here we characterize the role of ScyD, ScyE, and ScyF, which were logically predicted to be responsible for late biosynthetic steps, in the biological context of N. punctiforme. In-frame deletion mutants of each were constructed (ΔscyD, ΔscyE, and ΔscyF) and their phenotypes studied. Expectedly, ΔscyE presents a scytoneminless phenotype, but no accumulation of the predicted intermediaries. Surprisingly, ΔscyD retains scytonemin production, implying that it is not required for biosynthesis. Indeed, scyD presents an interesting evolutionary paradox: it likely originated in a duplication event from scyE, and unlike other genes in the operon, it has not been subjected to purifying selection. This would suggest that it is a pseudogene, and yet scyD is highly conserved in the scytonemin operon of cyanobacteria. ΔscyF also retains scytonemin production, albeit exhibiting a reduction of the production yield compared with the wild-type. This indicates that ScyF is not essential but may play an adjuvant role for scytonemin synthesis. Altogether, our findings suggest that these downstream genes are not responsible, as expected, for the late steps of scytonemin synthesis and we must look for those functions elsewhere. These findings are particularly important for biotechnological production of this sunscreen through heterologous expression of its genes in more tractable organisms.

ContributorsFerreira, Daniela (Author) / Garcia-Pichel, Ferran (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-05-18
128799-Thumbnail Image.png
Description

Background: Urbanization can strongly impact the physiology, behavior, and fitness of animals. Conditions in cities may also promote the transmission and success of animal parasites and pathogens. However, to date, no studies have examined variation in the prevalence or severity of several distinct pathogens/parasites along a gradient of urbanization in animals

Background: Urbanization can strongly impact the physiology, behavior, and fitness of animals. Conditions in cities may also promote the transmission and success of animal parasites and pathogens. However, to date, no studies have examined variation in the prevalence or severity of several distinct pathogens/parasites along a gradient of urbanization in animals or if these infections increase physiological stress in urban populations.

Methodology/Principal Findings: Here, we measured the prevalence and severity of infection with intestinal coccidians (Isospora sp.) and the canarypox virus (Avipoxvirus) along an urban-to-rural gradient in wild male house finches (Haemorhous mexicanus). In addition, we quantified an important stress indicator in animals (oxidative stress) and several axes of urbanization, including human population density and land-use patterns within a 1 km radius of each trapping site. Prevalence of poxvirus infection and severity of coccidial infection were significantly associated with the degree of urbanization, with an increase of infection in more urban areas. The degrees of infection by the two parasites were not correlated along the urban-rural gradient. Finally, levels of oxidative damage in plasma were not associated with infection or with urbanization metrics.

Conclusion/Significance: These results indicate that the physical presence of humans in cities and the associated altered urban landscape characteristics are associated with increased infections with both a virus and a gastrointestinal parasite in this common songbird resident of North American cities. Though we failed to find elevations in urban- or parasite/pathogen-mediated oxidative stress, humans may facilitate infections in these birds via bird feeders (i.e. horizontal disease transmission due to unsanitary surfaces and/or elevations in host population densities) and/or via elevations in other forms of physiological stress (e.g. corticosterone, nutritional).

ContributorsGiraudeau, Mathieu (Author) / Mousel, Melanie (Author) / Earl, Stevan (Author) / McGraw, Kevin (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-02-04
129006-Thumbnail Image.png
Description

Background: The coevolution of male traits and female mate preferences has led to the elaboration and diversification of sexually selected traits; however the mechanisms that mediate trait-preference coevolution are largely unknown. Carotenoid acquisition and accumulation are key determinants of the expression of male sexually selected carotenoid-based coloration and a primary mechanism

Background: The coevolution of male traits and female mate preferences has led to the elaboration and diversification of sexually selected traits; however the mechanisms that mediate trait-preference coevolution are largely unknown. Carotenoid acquisition and accumulation are key determinants of the expression of male sexually selected carotenoid-based coloration and a primary mechanism maintaining the honest information content of these signals. Carotenoids also influence female health and reproduction in ways that may alter the costs and benefits of mate choice behaviors and thus provide a potential biochemical link between the expression of male traits and female preferences. To test this hypothesis, we manipulated the dietary carotenoid levels of captive female house finches (Carpodacus mexicanus) and assessed their mate choice behavior in response to color-manipulated male finches.

Results: Females preferred to associate with red males, but carotenoid supplementation did not influence the direction or strength of this preference. Females receiving a low-carotenoid diet were less responsive to males in general, and discrimination among the colorful males was positively linked to female plasma carotenoid levels at the beginning of the study when the diet of all birds was carotenoid-limited.

Conclusions: Although female preference for red males was not influenced by carotenoid intake, changes in mating responsiveness and discrimination linked to female carotenoid status may alter how this preference is translated into choice. The reddest males, with the most carotenoid rich plumage, tend to pair early in the breeding season. If carotenoid-related variations in female choice behavior shift the timing of pairing, then they have the potential to promote assortative mating by carotenoid status and drive the evolution of carotenoid-based male plumage coloration.

ContributorsToomey, Matthew (Author) / McGraw, Kevin (Author) / College of Liberal Arts and Sciences (Contributor)
Created2012-01-10
128909-Thumbnail Image.png
Description

Environmental conditions early in life can affect an organism’s phenotype at adulthood, which may be tuned to perform optimally in conditions that mimic those experienced during development (Environmental Matching hypothesis), or may be generally superior when conditions during development were of higher quality (Silver Spoon hypothesis). Here, we tested these

Environmental conditions early in life can affect an organism’s phenotype at adulthood, which may be tuned to perform optimally in conditions that mimic those experienced during development (Environmental Matching hypothesis), or may be generally superior when conditions during development were of higher quality (Silver Spoon hypothesis). Here, we tested these hypotheses by examining how diet during development interacted with diet during adulthood to affect adult sexually selected ornamentation and immune function in male mallard ducks (Anas platyrhynchos). Mallards have yellow, carotenoid-pigmented beaks that are used in mate choice, and the degree of beak coloration has been linked to adult immune function. Using a 2×2 factorial experimental design, we reared mallards on diets containing either low or high levels of carotenoids (nutrients that cannot be synthesized de novo) throughout the period of growth, and then provided adults with one of these two diets while simultaneously quantifying beak coloration and response to a variety of immune challenges.

We found that both developmental and adult carotenoid supplementation increased circulating carotenoid levels during dietary treatment, but that birds that received low-carotenoid diets during development maintained relatively higher circulating carotenoid levels during an adult immune challenge. Individuals that received low levels of carotenoids during development had larger phytohemagglutinin (PHA)-induced cutaneous immune responses at adulthood; however, dietary treatment during development and adulthood did not affect antibody response to a novel antigen, nitric oxide production, natural antibody levels, hemolytic capacity of the plasma, or beak coloration. However, beak coloration prior to immune challenges positively predicted PHA response, and strong PHA responses were correlated with losses in carotenoid-pigmented coloration. In sum, we did not find consistent support for either the Environmental Matching or Silver Spoon hypotheses. We then describe a new hypothesis that should be tested in future studies examining developmental plasticity.

ContributorsButler, Michael (Author) / McGraw, Kevin (Author) / College of Liberal Arts and Sciences (Contributor)
Created2012-05-30
128908-Thumbnail Image.png
Description

N2 fixation and ammonia oxidation (AO) are the two most important processes in the nitrogen (N) cycle of biological soil crusts (BSCs). We studied the short-term response of acetylene reduction assay (ARA) rates, an indicator of potential N2 fixation, and AO rates to temperature (T, -5°C to 35°C) in BSC

N2 fixation and ammonia oxidation (AO) are the two most important processes in the nitrogen (N) cycle of biological soil crusts (BSCs). We studied the short-term response of acetylene reduction assay (ARA) rates, an indicator of potential N2 fixation, and AO rates to temperature (T, -5°C to 35°C) in BSC of different successional stages along the BSC ecological succession and geographic origin (hot Chihuahuan and cooler Great Basin deserts). ARA in all BSCs increased with T until saturation occurred between 15 and 20°C, and declined at 30–35°C. Culture studies using cyanobacteria isolated from these crusts indicated that the saturating effect was traceable to their inability to grow well diazotrophically within the high temperature range. Below saturation, temperature response was exponential, with Q10 significantly different in the two areas (~ 5 for Great Basin BSCs; 2–3 for Chihuahuan BSCs), but similar between the two successional stages. However, in contrast to ARA, AO showed a steady increase to 30–35°C in Great Basin, and Chihuhuan BSCs showed no inhibition at any tested temperature. The T response of AO also differed significantly between Great Basin (Q10 of 4.5–4.8) and Chihuahuan (Q10 of 2.4–2.6) BSCs, but not between successional stages. Response of ARA rates to T did not differ from that of AO in either desert. Thus, while both processes scaled to T in unison until 20°C, they separated to an increasing degree at higher temperature. As future warming is likely to occur in the regions where BSCs are often the dominant living cover, this predicted decoupling is expected to result in higher proportion of nitrates in soil relative to ammonium. As nitrate is more easily lost as leachate or to be reduced to gaseous forms, this could mean a depletion of soil N over large landscapes globally.

ContributorsZhou, Xiaobing (Author) / Smith, Hilda (Author) / Girardo Silva, Ana Maria (Author) / Belnap, Jayne (Author) / Garcia-Pichel, Ferran (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-10-24
128896-Thumbnail Image.png
Description

Background: For many bird species, vision is the primary sensory modality used to locate and assess food items. The health and spectral sensitivities of the avian visual system are influenced by diet-derived carotenoid pigments that accumulate in the retina. Among wild House Finches (Carpodacus mexicanus), we have found that retinal carotenoid

Background: For many bird species, vision is the primary sensory modality used to locate and assess food items. The health and spectral sensitivities of the avian visual system are influenced by diet-derived carotenoid pigments that accumulate in the retina. Among wild House Finches (Carpodacus mexicanus), we have found that retinal carotenoid accumulation varies significantly among individuals and is related to dietary carotenoid intake. If diet-induced changes in retinal carotenoid accumulation alter spectral sensitivity, then they have the potential to affect visually mediated foraging performance.

Methodology/Principal Findings: In two experiments, we measured foraging performance of house finches with dietarily manipulated retinal carotenoid levels. We tested each bird's ability to extract visually contrasting food items from a matrix of inedible distracters under high-contrast (full) and dimmer low-contrast (red-filtered) lighting conditions. In experiment one, zeaxanthin-supplemented birds had significantly increased retinal carotenoid levels, but declined in foraging performance in the high-contrast condition relative to astaxanthin-supplemented birds that showed no change in retinal carotenoid accumulation. In experiments one and two combined, we found that retinal carotenoid concentrations predicted relative foraging performance in the low- vs. high-contrast light conditions in a curvilinear pattern. Performance was positively correlated with retinal carotenoid accumulation among birds with low to medium levels of accumulation (∼0.5–1.5 µg/retina), but declined among birds with very high levels (>2.0 µg/retina).

Conclusion/Significance: Our results suggest that carotenoid-mediated spectral filtering enhances color discrimination, but that this improvement is traded off against a reduction in sensitivity that can compromise visual discrimination. Thus, retinal carotenoid levels may be optimized to meet the visual demands of specific behavioral tasks and light environments.

ContributorsToomey, Matthew (Author) / McGraw, Kevin (Author) / College of Liberal Arts and Sciences (Contributor)
Created2011-06-29
128888-Thumbnail Image.png
Description

Sexual selection requires both that there is heritable variation in traits related to fitness, and that either some of this variation is linked to traits of the parents, and/or that there are direct benefits of choosing particular individuals as mates. This suggests that if direct benefits are important offspring performance

Sexual selection requires both that there is heritable variation in traits related to fitness, and that either some of this variation is linked to traits of the parents, and/or that there are direct benefits of choosing particular individuals as mates. This suggests that if direct benefits are important offspring performance should be predicted by traits of the rearing adults. But if indirect benefits are more significant offspring performance should be predicted by traits of the adults at the nest-of-origin. We conducted cross-fostering experiments in great tits (Parus major) over four years, in two of which we manipulated environmental conditions by providing supplemental food. In a third year, some nestlings were directly supplemented with carotenoids. Nestlings in broods whose rearing adults received supplemental food were heavier and had improved immune responses even when controlling for body mass. Nestling immune function was related to measures of the yellow plumage color of both the rearing male and the putative father. Nestling body mass was influenced by the coloration of both the rearing female and the genetic mother. Our results suggest that features of both their social and putative genetic parents influence nestling health and growth. From this it would appear that females could be gaining both direct and indirect benefits through mate choice of male plumage traits and that it would be possible for males to similarly gain through mate choice of female traits.

ContributorsPickett, Simon R. A. (Author) / Weber, Sam B. (Author) / McGraw, Kevin (Author) / Norris, Ken J. (Author) / Evans, Matthew R. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-07-30
128626-Thumbnail Image.png
Description

Male courtship display is common in many animals; in some cases, males engage in courtship indiscriminately, spending significant time and energy courting heterospecifics with whom they have no chance of mating or producing viable offspring. Due to high costs and few if any benefits, we might expect mechanisms to evolve

Male courtship display is common in many animals; in some cases, males engage in courtship indiscriminately, spending significant time and energy courting heterospecifics with whom they have no chance of mating or producing viable offspring. Due to high costs and few if any benefits, we might expect mechanisms to evolve to reduce such misdirected courtship (or ‘reproductive interference’). In Habronattus jumping spiders, males frequently court heterospecifics with whom they do not mate or hybridize; females are larger and are voracious predators, posing a severe risk to males who court indiscriminately. In this study, we examined patterns of misdirected courtship in a natural community of four sympatric Habronattus species (H. clypeatus, H. hallani, H. hirsutus, and H. pyrrithrix).

We used direct field observations to weigh support for two hypotheses (differential microhabitat use and species recognition signaling) to explain how these species reduce the costs associated with misdirected courtship. We show that, while the four species of Habronattus do show some differences in microhabitat use, all four species still overlap substantially, and in three of the four species individuals equally encountered heterospecifics and conspecifics. Males courted females at every opportunity, regardless of species, and in some cases, this led to aggression and predation by the female. These results suggest that, while differences in microhabitat use might reduce misdirected courtship to some extent, co-existence of these four species may be possible due to complex communication (i.e. species-specific elements of a male’s courtship display). This study is the first to examine misdirected courtship in jumping spiders. Studies of misdirected courtship and its consequences in the field are limited and may broaden our understanding of how biodiversity is maintained within a community.

ContributorsTaylor, Lisa (Author) / Powell, Erin C. (Author) / McGraw, Kevin (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-04-05
129391-Thumbnail Image.png
Description

Cyanobacteria are considered good models for biohydrogen production because they are relatively simple organisms with a demonstrable ability to generate H2 under certain physiological conditions. However, most produce only little H2, revert readily to H2 consumption, and suffer from hydrogenase sensitivity to O2. Strains of the cyanobacteria Lyngbya aestuarii and

Cyanobacteria are considered good models for biohydrogen production because they are relatively simple organisms with a demonstrable ability to generate H2 under certain physiological conditions. However, most produce only little H2, revert readily to H2 consumption, and suffer from hydrogenase sensitivity to O2. Strains of the cyanobacteria Lyngbya aestuarii and Microcoleus chthonoplastes obtained from marine intertidal cyanobacterial mats were recently found to display much better H2 production potential. Because of their ecological origin in environments that become quickly anoxic in the dark, we hypothesized that this differential ability may have evolved to serve a role in the fermentation of the photosynthate. Here we show that, when forced to ferment internal substrate, these cyanobacteria display desirable characteristics of physiological H2 production. Among them, the strain L. aestuarii BL J had the fastest specific rates and attained the highest H2 concentrations during fermentation of photosynthate, which proceeded via a mixed acid fermentation pathway to yield acetate, ethanol, lactate, H2, CO2, and pyruvate. Contrary to expectations, the H2 yield per mole of glucose was only average compared to that of other cyanobacteria. Thermodynamic analyses point to the use of electron donors more electronegative than NAD(P)H in Lyngbya hydrogenases as the basis for its strong H2 production ability. In any event, the high specific rates and H2 concentrations coupled with the lack of reversibility of the enzyme, at the expense of internal, photosynthetically generated reductants, makes L. aestuarii BL J and/or its enzymes, a potentially feasible platform for large-scale H2 production.

ContributorsKothari, Ankita (Author) / Parameswaran, Prathap (Author) / Garcia-Pichel, Ferran (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-12-10
128489-Thumbnail Image.png
Description

Color vision in birds is mediated by four types of cone photoreceptors whose maximal sensitivities (λmax) are evenly spaced across the light spectrum. In the course of avian evolution, the λmax of the most shortwave-sensitive cone, SWS1, has switched between violet (λmax > 400 nm) and ultraviolet (λmax < 380

Color vision in birds is mediated by four types of cone photoreceptors whose maximal sensitivities (λmax) are evenly spaced across the light spectrum. In the course of avian evolution, the λmax of the most shortwave-sensitive cone, SWS1, has switched between violet (λmax > 400 nm) and ultraviolet (λmax < 380 nm) multiple times. This shift of the SWS1 opsin is accompanied by a corresponding short-wavelength shift in the spectrally adjacent SWS2 cone. Here, we show that SWS2 cone spectral tuning is mediated by modulating the ratio of two apocarotenoids, galloxanthin and 11’,12’-dihydrogalloxanthin, which act as intracellular spectral filters in this cell type. We propose an enzymatic pathway that mediates the differential production of these apocarotenoids in the avian retina, and we use color vision modeling to demonstrate how correlated evolution of spectral tuning is necessary to achieve even sampling of the light spectrum and thereby maintain near-optimal color discrimination.

ContributorsToomey, Matthew B. (Author) / Lind, Olle (Author) / Frederiksen, Rikard (Author) / Curley, Robert W. (Author) / Riedl, Ken M. (Author) / Wilby, David (Author) / Schwartz, Steven J. (Author) / Witt, Christopher C. (Author) / Harrison, Earl H. (Author) / Roberts, Nicholas W. (Author) / Vorobyev, Misha (Author) / McGraw, Kevin (Author) / Cornwall, M. Carter (Author) / Kelber, Almut (Author) / Corbo, Joseph C. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-07-12