This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 22
Filtering by

Clear all filters

Description

It is known that in classical fluids turbulence typically occurs at high Reynolds numbers. But can turbulence occur at low Reynolds numbers? Here we investigate the transition to turbulence in the classic Taylor-Couette system in which the rotating fluids are manufactured ferrofluids with magnetized nanoparticles embedded in liquid carriers. We

It is known that in classical fluids turbulence typically occurs at high Reynolds numbers. But can turbulence occur at low Reynolds numbers? Here we investigate the transition to turbulence in the classic Taylor-Couette system in which the rotating fluids are manufactured ferrofluids with magnetized nanoparticles embedded in liquid carriers. We find that, in the presence of a magnetic field transverse to the symmetry axis of the system, turbulence can occur at Reynolds numbers that are at least one order of magnitude smaller than those in conventional fluids. This is established by extensive computational ferrohydrodynamics through a detailed investigation of transitions in the flow structure, and characterization of behaviors of physical quantities such as the energy, the wave number, and the angular momentum through the bifurcations. A finding is that, as the magnetic field is increased, onset of turbulence can be determined accurately and reliably. Our results imply that experimental investigation of turbulence may be feasible by using ferrofluids. Our study of transition to and evolution of turbulence in the Taylor-Couette ferrofluidic flow system provides insights into the challenging problem of turbulence control.

ContributorsAltmeyer, Sebastian (Author) / Do, Younghae (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-06-12
129027-Thumbnail Image.png
Description

Background: Worksites are important locations for interventions to promote health. However, occupational programs with documented efficacy often are not used, and those being implemented have not been studied. The research in this report was funded through the American Reinvestment and Recovery Act Challenge Topic 'Pathways for Translational Research,' to define and

Background: Worksites are important locations for interventions to promote health. However, occupational programs with documented efficacy often are not used, and those being implemented have not been studied. The research in this report was funded through the American Reinvestment and Recovery Act Challenge Topic 'Pathways for Translational Research,' to define and prioritize determinants that enable and hinder translation of evidenced-based health interventions in well-defined settings.

Methods: The IGNITE (investigation to guide new insights for translational effectiveness) trial is a prospective cohort study of a worksite wellness and injury reduction program from adoption to final outcomes among 12 fire departments. It will employ a mixed methods strategy to define a translational model. We will assess decision to adopt, installation, use, and outcomes (reach, individual outcomes, and economic effects) using onsite measurements, surveys, focus groups, and key informant interviews. Quantitative data will be used to define the model and conduct mediation analysis of each translational phase. Qualitative data will expand on, challenge, and confirm survey findings and allow a more thorough understanding and convergent validity by overcoming biases in qualitative and quantitative methods used alone.

Discussion: Findings will inform worksite wellness in fire departments. The resultant prioritized influences and model of effective translation can be validated and manipulated in these and other settings to more efficiently move science to service.

ContributorsElliot, Diane L. (Author) / Kuehl, Kerry (Author) / Moe, Esther L. (Author) / DeFrancesco, Carol A. (Author) / Goldberg, Linn (Author) / MacKinnon, David (Author) / Enders, Jeanne (Author) / Favorite, Kim C. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2010-10-08
128555-Thumbnail Image.png
Description

We investigate fundamental nonlinear dynamics of ferrofluidic Taylor-Couette flow - flow confined be-tween two concentric independently rotating cylinders - consider small aspect ratio by solving the ferro-hydrodynamical equations, carrying out systematic bifurcation analysis. Without magnetic field, we find steady flow patterns, previously observed with a simple fluid, such as those

We investigate fundamental nonlinear dynamics of ferrofluidic Taylor-Couette flow - flow confined be-tween two concentric independently rotating cylinders - consider small aspect ratio by solving the ferro-hydrodynamical equations, carrying out systematic bifurcation analysis. Without magnetic field, we find steady flow patterns, previously observed with a simple fluid, such as those containing normal one- or two vortex cells, as well as anomalous one-cell and twin-cell flow states. However, when a symmetry-breaking transverse magnetic field is present, all flow states exhibit stimulated, finite two-fold mode. Various bifurcations between steady and unsteady states can occur, corresponding to the transitions between the two-cell and one-cell states. While unsteady, axially oscillating flow states can arise, we also detect the emergence of new unsteady flow states. In particular, we uncover two new states: one contains only the azimuthally oscillating solution in the configuration of the twin-cell flow state, and an-other a rotating flow state. Topologically, these flow states are a limit cycle and a quasiperiodic solution on a two-torus, respectively. Emergence of new flow states in addition to observed ones with classical fluid, indicates that richer but potentially more controllable dynamics in ferrofluidic flows, as such flow states depend on the external magnetic field.

ContributorsAltmeyer, Sebastian (Author) / Do, Younghae (Author) / Lai, Ying-Cheng (Author)
Created2017-01-06
128531-Thumbnail Image.png
Description

We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can

We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices.

ContributorsAltmeyer, Sebastian (Author) / Do, Younghae (Author) / Lai, Ying-Cheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-12-21
129570-Thumbnail Image.png
Description

Land-use mapping is critical for global change research. In Central Arizona, U.S.A., the spatial distribution of land use is important for sustainable land management decisions. The objective of this study was to create a land-use map that serves as a model for the city of Maricopa, an expanding urban region

Land-use mapping is critical for global change research. In Central Arizona, U.S.A., the spatial distribution of land use is important for sustainable land management decisions. The objective of this study was to create a land-use map that serves as a model for the city of Maricopa, an expanding urban region in the Sun Corridor of Arizona. We use object-based image analysis to map six land-use types from ASTER imagery, and then compare this with two per-pixel classifications. Our results show that a single segmentation, combined with intermediary classifications and merging, morphing, and growing image-objects, can lead to an accurate land-use map that is capable of utilizing both spatial and spectral information. We also employ a moving-window diversity assessment to help with analysis and improve post-classification modifications.

ContributorsGalletti, Christopher (Author) / Myint, Soe (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-07-01
128770-Thumbnail Image.png
Description

Urban environmental measurements and observational statistics should reflect the properties generated over an adjacent area of adequate length where homogeneity is usually assumed. The determination of this characteristic source area that gives sufficient representation of the horizontal coverage of a sensing instrument or the fetch of transported quantities is of

Urban environmental measurements and observational statistics should reflect the properties generated over an adjacent area of adequate length where homogeneity is usually assumed. The determination of this characteristic source area that gives sufficient representation of the horizontal coverage of a sensing instrument or the fetch of transported quantities is of critical importance to guide the design and implementation of urban landscape planning strategies. In this study, we aim to unify two different methods for estimating source areas, viz. the statistical correlation method commonly used by geographers for landscape fragmentation and the mechanistic footprint model by meteorologists for atmospheric measurements. Good agreement was found in the intercomparison of the estimate of source areas by the two methods, based on 2-m air temperature measurement collected using a network of weather stations. The results can be extended to shed new lights on urban planning strategies, such as the use of urban vegetation for heat mitigation. In general, a sizable patch of landscape is required in order to play an effective role in regulating the local environment, proportional to the height at which stakeholders’ interest is mainly concerned.

ContributorsWang, Zhi-Hua (Author) / Fan, Chao (Author) / Myint, Soe (Author) / Wang, Chenghao (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-11-10
129005-Thumbnail Image.png
Description

Background: Counselor behaviors that mediate the efficacy of motivational interviewing (MI) are not well understood, especially when applied to health behavior promotion. We hypothesized that client change talk mediates the relationship between counselor variables and subsequent client behavior change.

Methods: Purposeful sampling identified individuals from a prospective randomized worksite trial using an MI

Background: Counselor behaviors that mediate the efficacy of motivational interviewing (MI) are not well understood, especially when applied to health behavior promotion. We hypothesized that client change talk mediates the relationship between counselor variables and subsequent client behavior change.

Methods: Purposeful sampling identified individuals from a prospective randomized worksite trial using an MI intervention to promote firefighters’ healthy diet and regular exercise that increased dietary intake of fruits and vegetables (n = 21) or did not increase intake of fruits and vegetables (n = 22). MI interactions were coded using the Motivational Interviewing Skill Code (MISC 2.1) to categorize counselor and firefighter verbal utterances. Both Bayesian and frequentist mediation analyses were used to investigate whether client change talk mediated the relationship between counselor skills and behavior change.

Results: Counselors’ global spirit, empathy, and direction and MI-consistent behavioral counts (e.g., reflections, open questions, affirmations, emphasize control) significantly correlated with firefighters’ total client change talk utterances (rs = 0.42, 0.40, 0.30, and 0.61, respectively), which correlated significantly with their fruit and vegetable intake increase (r = 0.33). Both Bayesian and frequentist mediation analyses demonstrated that findings were consistent with hypotheses, such that total client change talk mediated the relationship between counselor’s skills—MI-consistent behaviors [Bayesian mediated effect: αβ = .06 (.03), 95% CI = .02, .12] and MI spirit [Bayesian mediated effect: αβ = .06 (.03), 95% CI = .01, .13]—and increased fruit and vegetable consumption.

Conclusion: Motivational interviewing is a resource- and time-intensive intervention, and is currently being applied in many arenas. Previous research has identified the importance of counselor behaviors and client change talk in the treatment of substance use disorders. Our results indicate that similar mechanisms may underlie the effects of MI for dietary change. These results inform MI training and application by identifying those processes critical for MI success in health promotion domains.

ContributorsPirlott, Angela (Author) / Kisbu-Sakarya, Yasemin (Author) / DeFrancesco, Carol A. (Author) / Elliot, Diane L. (Author) / MacKinnon, David (Author) / College of Liberal Arts and Sciences (Contributor)
Created2012-06-08
129275-Thumbnail Image.png
Description

We investigate high-dimensional nonlinear dynamical systems exhibiting multiple resonances under adiabatic parameter variations. Our motivations come from experimental considerations where time-dependent sweeping of parameters is a practical approach to probing and characterizing the bifurcations of the system. The question is whether bifurcations so detected are faithful representations of the bifurcations

We investigate high-dimensional nonlinear dynamical systems exhibiting multiple resonances under adiabatic parameter variations. Our motivations come from experimental considerations where time-dependent sweeping of parameters is a practical approach to probing and characterizing the bifurcations of the system. The question is whether bifurcations so detected are faithful representations of the bifurcations intrinsic to the original stationary system. Utilizing a harmonically forced, closed fluid flow system that possesses multiple resonances and solving the Navier-Stokes equation under proper boundary conditions, we uncover the phenomenon of the early effect. Specifically, as a control parameter, e.g., the driving frequency, is adiabatically increased from an initial value, resonances emerge at frequency values that are lower than those in the corresponding stationary system. The phenomenon is established by numerical characterization of physical quantities through the resonances, which include the kinetic energy and the vorticity field, and a heuristic analysis based on the concept of instantaneous frequency. A simple formula is obtained which relates the resonance points in the time-dependent and time-independent systems. Our findings suggest that, in general, any true bifurcation of a nonlinear dynamical system can be unequivocally uncovered through adiabatic parameter sweeping, in spite of a shift in the bifurcation point, which is of value to experimental studies of nonlinear dynamical systems.

ContributorsPark, Youngyong (Author) / Do, Younghae (Author) / Altmeyer, Sebastian (Author) / Lai, Ying-Cheng (Author) / Lee, GyuWon (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-02-09
129656-Thumbnail Image.png
Description

The objective of this study was to identify physical, social, and intrapersonal cues that were associated with the consumption of sweetened beverages and sweet and salty snacks among adolescents from lower SES neighborhoods. Students were recruited from high schools with a minimum level of 25% free or reduced cost lunches.

The objective of this study was to identify physical, social, and intrapersonal cues that were associated with the consumption of sweetened beverages and sweet and salty snacks among adolescents from lower SES neighborhoods. Students were recruited from high schools with a minimum level of 25% free or reduced cost lunches. Using ecological momentary assessment, participants (N = 158) were trained to answer brief questionnaires on handheld PDA devices: (a) each time they ate or drank, (b) when prompted randomly, and (c) once each evening. Data were collected over 7 days for each participant. Participants reported their location (e.g., school grounds, home), mood, social environment, activities (e.g., watching TV, texting), cravings, food cues (e.g., saw a snack), and food choices. Results showed that having unhealthy snacks or sweet drinks among adolescents was associated with being at school, being with friends, feeling lonely or bored, craving a drink or snack, and being exposed to food cues. Surprisingly, sweet drink consumption was associated with exercising. Watching TV was associated with consuming sweet snacks but not with salty snacks or sweet drinks. These findings identify important environmental and intrapersonal cues to poor snacking choices that may be applied to interventions designed to disrupt these food-related, cue-behavior linked habits.

ContributorsGrenard, Jerry L. (Author) / Stacy, Alan W. (Author) / Shiffman, Saul (Author) / Baraldi, Amanda (Author) / MacKinnon, David (Author) / Lockhart, Ginger (Author) / Kisbu-Sakarya, Yasemin (Author) / Boyle, Sarah (Author) / Beleva, Yuliyana (Author) / Koprowski, Carol (Author) / Ames, Susan L. (Author) / Reynolds, Kim D. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-09-09
129645-Thumbnail Image.png
Description

Methodologists have developed mediation analysis techniques for a broad range of substantive applications, yet methods for estimating mediating mechanisms with missing data have been understudied. This study outlined a general Bayesian missing data handling approach that can accommodate mediation analyses with any number of manifest variables. Computer simulation studies showed

Methodologists have developed mediation analysis techniques for a broad range of substantive applications, yet methods for estimating mediating mechanisms with missing data have been understudied. This study outlined a general Bayesian missing data handling approach that can accommodate mediation analyses with any number of manifest variables. Computer simulation studies showed that the Bayesian approach produced frequentist coverage rates and power estimates that were comparable to those of maximum likelihood with the bias-corrected bootstrap. We share an SAS macro that implements Bayesian estimation and use 2 data analysis examples to demonstrate its use.

ContributorsEnders, Craig (Author) / Fairchild, Amanda J. (Author) / MacKinnon, David (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013