This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 31
Filtering by

Clear all filters

141463-Thumbnail Image.png
Description

Five immunocompetent C57BL/6-cBrd/cBrd/Cr (albino C57BL/6) mice were injected with GL261-luc2 cells, a cell line sharing characteristics of human glioblastoma multiforme (GBM). The mice were imaged using magnetic resonance (MR) at five separate time points to characterize growth and development of the tumor. After 25 days, the final tumor volumes of

Five immunocompetent C57BL/6-cBrd/cBrd/Cr (albino C57BL/6) mice were injected with GL261-luc2 cells, a cell line sharing characteristics of human glioblastoma multiforme (GBM). The mice were imaged using magnetic resonance (MR) at five separate time points to characterize growth and development of the tumor. After 25 days, the final tumor volumes of the mice varied from 12 mm3 to 62 mm3, even though mice were inoculated from the same tumor cell line under carefully controlled conditions. We generated hypotheses to explore large variances in final tumor size and tested them with our simple reaction-diffusion model in both a 3-dimensional (3D) finite difference method and a 2-dimensional (2D) level set method. The parameters obtained from a best-fit procedure, designed to yield simulated tumors as close as possible to the observed ones, vary by an order of magnitude between the three mice analyzed in detail. These differences may reflect morphological and biological variability in tumor growth, as well as errors in the mathematical model, perhaps from an oversimplification of the tumor dynamics or nonidentifiability of parameters. Our results generate parameters that match other experimental in vitro and in vivo measurements. Additionally, we calculate wave speed, which matches with other rat and human measurements.

ContributorsRutter, Erica (Author) / Stepien, Tracy (Author) / Anderies, Barrett (Author) / Plasencia, Jonathan (Author) / Woolf, Eric C. (Author) / Scheck, Adrienne C. (Author) / Turner, Gregory H. (Author) / Liu, Qingwei (Author) / Frakes, David (Author) / Kodibagkar, Vikram (Author) / Kuang, Yang (Author) / Preul, Mark C. (Author) / Kostelich, Eric (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-05-31
141494-Thumbnail Image.png
Description

Background:
Data assimilation refers to methods for updating the state vector (initial condition) of a complex spatiotemporal model (such as a numerical weather model) by combining new observations with one or more prior forecasts. We consider the potential feasibility of this approach for making short-term (60-day) forecasts of the growth and

Background:
Data assimilation refers to methods for updating the state vector (initial condition) of a complex spatiotemporal model (such as a numerical weather model) by combining new observations with one or more prior forecasts. We consider the potential feasibility of this approach for making short-term (60-day) forecasts of the growth and spread of a malignant brain cancer (glioblastoma multiforme) in individual patient cases, where the observations are synthetic magnetic resonance images of a hypothetical tumor.

Results:
We apply a modern state estimation algorithm (the Local Ensemble Transform Kalman Filter), previously developed for numerical weather prediction, to two different mathematical models of glioblastoma, taking into account likely errors in model parameters and measurement uncertainties in magnetic resonance imaging. The filter can accurately shadow the growth of a representative synthetic tumor for 360 days (six 60-day forecast/update cycles) in the presence of a moderate degree of systematic model error and measurement noise.

Conclusions:
The mathematical methodology described here may prove useful for other modeling efforts in biology and oncology. An accurate forecast system for glioblastoma may prove useful in clinical settings for treatment planning and patient counseling.

ContributorsKostelich, Eric (Author) / Kuang, Yang (Author) / McDaniel, Joshua (Author) / Moore, Nina Z. (Author) / Martirosyan, Nikolay L. (Author) / Preul, Mark C. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2011-12-21
Description

High-resolution, global quantification of fossil fuel CO[subscript 2] emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high-resolution fossil fuel CO[subscript 2] emissions. We have improved the underlying observationally based

High-resolution, global quantification of fossil fuel CO[subscript 2] emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high-resolution fossil fuel CO[subscript 2] emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long-term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long-term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter-term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO[subscript 2] emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO[subscript 2] emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set.

ContributorsAsefi-Najafabady, Salvi (Author) / Rayner, P. J. (Author) / Gurney, Kevin (Author) / McRobert, A. (Author) / Song, Y. (Author) / Coltin, K. (Author) / Huang, J. (Author) / Elvidge, C. (Author) / Baugh, K. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-09-16
128168-Thumbnail Image.png
Description

Large urban emissions of greenhouse gases result in large atmospheric enhancements relative to background that are easily measured. Using CO2 mole fractions and Δ14C and δ13C values of CO2 in the Los Angeles megacity observed in inland Pasadena (2006–2013) and coastal Palos Verdes peninsula (autumn 2009–2013), we have determined time

Large urban emissions of greenhouse gases result in large atmospheric enhancements relative to background that are easily measured. Using CO2 mole fractions and Δ14C and δ13C values of CO2 in the Los Angeles megacity observed in inland Pasadena (2006–2013) and coastal Palos Verdes peninsula (autumn 2009–2013), we have determined time series for CO2 contributions from fossil fuel combustion (Cff) for both sites and broken those down into contributions from petroleum and/or gasoline and natural gas burning for Pasadena. We find a 10 % reduction in Pasadena Cff during the Great Recession of 2008–2010, which is consistent with the bottom-up inventory determined by the California Air Resources Board. The isotopic variations and total atmospheric CO2 from our observations are used to infer seasonality of natural gas and petroleum combustion. The trend of CO2 contributions to the atmosphere from natural gas combustion is out of phase with the seasonal cycle of total natural gas combustion seasonal patterns in bottom-up inventories but is consistent with the seasonality of natural gas usage by the area's electricity generating power plants. For petroleum, the inferred seasonality of CO2 contributions from burning petroleum is delayed by several months relative to usage indicated by statewide gasoline taxes. Using the high-resolution Hestia-LA data product to compare Cff from parts of the basin sampled by winds at different times of year, we find that variations in observed fossil fuel CO2 reflect seasonal variations in wind direction. The seasonality of the local CO2 excess from fossil fuel combustion along the coast, on Palos Verdes peninsula, is higher in autumn and winter than spring and summer, almost completely out of phase with that from Pasadena, also because of the annual variations of winds in the region. Variations in fossil fuel CO2 signals are consistent with sampling the bottom-up Hestia-LA fossil CO2 emissions product for sub-city source regions in the LA megacity domain when wind directions are considered.

ContributorsNewman, Sally (Author) / Xu, Xiaomei (Author) / Gurney, Kevin (Author) / Hsu, Ying Kuang (Author) / Li, King Fai (Author) / Jiang, Xun (Author) / Keeling, Ralph (Author) / Feng, Sha (Author) / O'Keeffe, Darragh (Author) / Patarasuk, Risa (Author) / Wong, Kam Weng (Author) / Rao, Preeti (Author) / Fischer, Marc L. (Author) / Yung, Yuk L. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-03-22
127901-Thumbnail Image.png
Description

Atmospheric CO2 inversions estimate surface carbon fluxes from an optimal fit to atmospheric CO2 measurements, usually including prior constraints on the flux estimates. Eleven sets of carbon flux estimates are compared, generated by different inversions systems that vary in their inversions methods, choice of atmospheric data, transport model and prior

Atmospheric CO2 inversions estimate surface carbon fluxes from an optimal fit to atmospheric CO2 measurements, usually including prior constraints on the flux estimates. Eleven sets of carbon flux estimates are compared, generated by different inversions systems that vary in their inversions methods, choice of atmospheric data, transport model and prior information. The inversions were run for at least 5 yr in the period between 1990 and 2010. Mean fluxes for 2001–2004, seasonal cycles, interannual variability and trends are compared for the tropics and northern and southern extra-tropics, and separately for land and ocean. Some continental/basin-scale subdivisions are also considered where the atmospheric network is denser. Four-year mean fluxes are reasonably consistent across inversions at global/latitudinal scale, with a large total (land plus ocean) carbon uptake in the north (−3.4 Pg C yr-1 (±0.5 Pg C yr-1 standard deviation), with slightly more uptake over land than over ocean), a significant although more variable source over the tropics (1.6 ± 0.9 Pg C yr-1) and a compensatory sink of similar magnitude in the south (−1.4 ± 0.5 Pg C yr-1) corresponding mainly to an ocean sink. Largest differences across inversions occur in the balance between tropical land sources and southern land sinks. Interannual variability (IAV) in carbon fluxes is larger for land than ocean regions (standard deviation around 1.06 versus 0.33 Pg C yr[superscript −1] for the 1996–2007 period), with much higher consistency among the inversions for the land. While the tropical land explains most of the IAV (standard deviation ~ 0.65 Pg C yr-1), the northern and southern land also contribute (standard deviation ~ 0.39 Pg C yr-1). Most inversions tend to indicate an increase of the northern land carbon uptake from late 1990s to 2008 (around 0.1 Pg C yr-1, predominantly in North Asia. The mean seasonal cycle appears to be well constrained by the atmospheric data over the northern land (at the continental scale), but still highly dependent on the prior flux seasonality over the ocean. Finally we provide recommendations to interpret the regional fluxes, along with the uncertainty estimates.

ContributorsPeylin, P. (Author) / Law, R. M. (Author) / Gurney, Kevin (Author) / Chevallier, F. (Author) / Jacobson, A. R. (Author) / Maki, T. (Author) / Niwa, Y. (Author) / Patra, P. K. (Author) / Peters, W. (Author) / Rayner, P. J. (Author) / Rodenbeck, C. (Author) / van der Laan-Luijkx, I. T. (Author) / Zhang, X. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-10-24
127871-Thumbnail Image.png
Description

This paper presents an analysis of methane emissions from the Los Angeles Basin at monthly timescales across a 4-year time period – from September 2011 to August 2015. Using observations acquired by a ground-based near-infrared remote sensing instrument on Mount Wilson, California, combined with atmospheric CH4–CO2 tracer–tracer correlations, we observed

This paper presents an analysis of methane emissions from the Los Angeles Basin at monthly timescales across a 4-year time period – from September 2011 to August 2015. Using observations acquired by a ground-based near-infrared remote sensing instrument on Mount Wilson, California, combined with atmospheric CH4–CO2 tracer–tracer correlations, we observed −18 to +22 % monthly variability in CH4 : CO2 from the annual mean in the Los Angeles Basin. Top-down estimates of methane emissions for the basin also exhibit significant monthly variability (−19 to +31 % from annual mean and a maximum month-to-month change of 47 %). During this period, methane emissions consistently peaked in the late summer/early fall and winter. The estimated annual methane emissions did not show a statistically significant trend over the 2011 to 2015 time period.

ContributorsWong, Clare K. (Author) / Pongetti, Thomas J. (Author) / Oda, Tom (Author) / Rao, Preeti (Author) / Gurney, Kevin (Author) / Newman, Sally (Author) / Duren, Riley M. (Author) / Miller, Charles E. (Author) / Yung, Yuk L. (Author) / Sander, Stanley P. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-10-26
128995-Thumbnail Image.png
Description

Background: Obesity is a metabolic disease caused by environmental and genetic factors. However, the epigenetic mechanisms of obesity are incompletely understood. The aim of our study was to investigate the role of skeletal muscle DNA methylation in combination with transcriptomic changes in obesity.

Results: Muscle biopsies were obtained basally from lean (n = 12; BMI = 23.4 ± 0.7

Background: Obesity is a metabolic disease caused by environmental and genetic factors. However, the epigenetic mechanisms of obesity are incompletely understood. The aim of our study was to investigate the role of skeletal muscle DNA methylation in combination with transcriptomic changes in obesity.

Results: Muscle biopsies were obtained basally from lean (n = 12; BMI = 23.4 ± 0.7 kg/m[superscript 2]) and obese (n = 10; BMI = 32.9 ± 0.7 kg/m[superscript 2]) participants in combination with euglycemic-hyperinsulinemic clamps to assess insulin sensitivity. We performed reduced representation bisulfite sequencing (RRBS) next-generation methylation and microarray analyses on DNA and RNA isolated from vastus lateralis muscle biopsies. There were 13,130 differentially methylated cytosines (DMC; uncorrected P < 0.05) that were altered in the promoter and untranslated (5' and 3'UTR) regions in the obese versus lean analysis. Microarray analysis revealed 99 probes that were significantly (corrected P < 0.05) altered. Of these, 12 genes (encompassing 22 methylation sites) demonstrated a negative relationship between gene expression and DNA methylation. Specifically, sorbin and SH3 domain containing 3 (SORBS3) which codes for the adapter protein vinexin was significantly decreased in gene expression (fold change −1.9) and had nine DMCs that were significantly increased in methylation in obesity (methylation differences ranged from 5.0 to 24.4 %). Moreover, differentially methylated region (DMR) analysis identified a region in the 5'UTR (Chr.8:22,423,530–22,423,569) of SORBS3 that was increased in methylation by 11.2 % in the obese group. The negative relationship observed between DNA methylation and gene expression for SORBS3 was validated by a site-specific sequencing approach, pyrosequencing, and qRT-PCR. Additionally, we performed transcription factor binding analysis and identified a number of transcription factors whose binding to the differentially methylated sites or region may contribute to obesity.

Conclusions: These results demonstrate that obesity alters the epigenome through DNA methylation and highlights novel transcriptomic changes in SORBS3 in skeletal muscle.

ContributorsDay, Samantha (Author) / Coletta, Rich (Author) / Kim, Joon Young (Author) / Campbell, Latoya (Author) / Benjamin, Tonya R. (Author) / Roust, Lori R. (Author) / De Filippis, Elena A. (Author) / Dinu, Valentin (Author) / Shaibi, Gabriel (Author) / Mandarino, Lawrence J. (Author) / Coletta, Dawn (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-07-18
128640-Thumbnail Image.png
Description

Background: Our publication of the BitTorious portal [1] demonstrated the ability to create a privatized distributed data warehouse of sufficient magnitude for real-world bioinformatics studies using minimal changes to the standard BitTorrent tracker protocol. In this second phase, we release a new server-side specification to accept anonymous philantropic storage donations by

Background: Our publication of the BitTorious portal [1] demonstrated the ability to create a privatized distributed data warehouse of sufficient magnitude for real-world bioinformatics studies using minimal changes to the standard BitTorrent tracker protocol. In this second phase, we release a new server-side specification to accept anonymous philantropic storage donations by the general public, wherein a small portion of each user’s local disk may be used for archival of scientific data. We have implementated the server-side announcement and control portions of this BitTorrent extension into v3.0.0 of the BitTorious portal, upon which compatible clients may be built.

Results: Automated test cases for the BitTorious Volunteer extensions have been added to the portal’s v3.0.0 release, supporting validation of the “peer affinity” concept and announcement protocol introduced by this specification. Additionally, a separate reference implementation of affinity calculation has been provided in C++ for informaticians wishing to integrate into libtorrent-based projects.

Conclusions: The BitTorrent “affinity” extensions as provided in the BitTorious portal reference implementation allow data publishers to crowdsource the extreme storage prerequisites for research in “big data” fields. With sufficient awareness and adoption of BitTorious Volunteer-based clients by the general public, the BitTorious portal may be able to provide peta-scale storage resources to the scientific community at relatively insignificant financial cost.

ContributorsLee, Preston (Author) / Dinu, Valentin (Author) / College of Health Solutions (Contributor)
Created2015-11-04
128639-Thumbnail Image.png
Description

Background: Centralized silos of genomic data are architecturally easier to initially design, develop and deploy than distributed models. However, as interoperability pains in EHR/EMR, HIE and other collaboration-centric life sciences domains have taught us, the core challenge of networking genomics systems is not in the construction of individual silos, but the

Background: Centralized silos of genomic data are architecturally easier to initially design, develop and deploy than distributed models. However, as interoperability pains in EHR/EMR, HIE and other collaboration-centric life sciences domains have taught us, the core challenge of networking genomics systems is not in the construction of individual silos, but the interoperability of those deployments in a manner embracing the heterogeneous needs, terms and infrastructure of collaborating parties. This article demonstrates the adaptation of BitTorrent to private collaboration networks in an authenticated, authorized and encrypted manner while retaining the same characteristics of standard BitTorrent.

Results: The BitTorious portal was sucessfully used to manage many concurrent domestic Bittorrent clients across the United States: exchanging genomics data payloads in excess of 500GiB using the uTorrent client software on Linux, OSX and Windows platforms. Individual nodes were sporadically interrupted to verify the resilience of the system to outages of a single client node as well as recovery of nodes resuming operation on intermittent Internet connections.

Conclusions: The authorization-based extension of Bittorrent and accompanying BitTorious reference tracker and user management web portal provide a free, standards-based, general purpose and extensible data distribution system for large ‘omics collaborations.

ContributorsLee, Preston (Author) / Dinu, Valentin (Author) / College of Health Solutions (Contributor)
Created2014-12-21
128958-Thumbnail Image.png
Description

Background: Immunosignaturing is a new peptide microarray based technology for profiling of humoral immune responses. Despite new challenges, immunosignaturing gives us the opportunity to explore new and fundamentally different research questions. In addition to classifying samples based on disease status, the complex patterns and latent factors underlying immunosignatures, which we attempt

Background: Immunosignaturing is a new peptide microarray based technology for profiling of humoral immune responses. Despite new challenges, immunosignaturing gives us the opportunity to explore new and fundamentally different research questions. In addition to classifying samples based on disease status, the complex patterns and latent factors underlying immunosignatures, which we attempt to model, may have a diverse range of applications.

Methods: We investigate the utility of a number of statistical methods to determine model performance and address challenges inherent in analyzing immunosignatures. Some of these methods include exploratory and confirmatory factor analyses, classical significance testing, structural equation and mixture modeling.

Results: We demonstrate an ability to classify samples based on disease status and show that immunosignaturing is a very promising technology for screening and presymptomatic screening of disease. In addition, we are able to model complex patterns and latent factors underlying immunosignatures. These latent factors may serve as biomarkers for disease and may play a key role in a bioinformatic method for antibody discovery.

Conclusion: Based on this research, we lay out an analytic framework illustrating how immunosignatures may be useful as a general method for screening and presymptomatic screening of disease as well as antibody discovery.

ContributorsBrown, Justin (Author) / Stafford, Phillip (Author) / Johnston, Stephen (Author) / Dinu, Valentin (Author) / College of Health Solutions (Contributor)
Created2011-08-19