This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 22
Filtering by

Clear all filters

127885-Thumbnail Image.png
Description

Research has shown that construction projects in Saudi Arabia have exhibited poor performance for the past three decades. The traditional risk management practices have been ineffective at helping contractors deliver projects on time and within budget while meeting quality expectations. Studies have identified that client decision making is one of

Research has shown that construction projects in Saudi Arabia have exhibited poor performance for the past three decades. The traditional risk management practices have been ineffective at helping contractors deliver projects on time and within budget while meeting quality expectations. Studies have identified that client decision making is one of the main causes of risks that occur on projects in Saudi Arabia. This paper proposes a new risk management model that can minimize client decision making, and enable the client to utilize expertise, thereby improving project quality and performance. The model is derived from the Information Measurement Theory (IMT) and Performance Information Procurement System (PIPS), both developed at Arizona State University in the United States (U.S.). The model has been tested over 1800 times in both construction and non-construction projects, showing a decrease in required management by owner by up to 80% and an increase in efficiency up to 40%.

ContributorsAlgahtany, Mohammed (Author) / Alhammadi, Yasir (Author) / Kashiwagi, Dean (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2016-05-20
127879-Thumbnail Image.png
Description

Brazil has had issues in efficiently providing the required amount of electricity to its citizens at a low cost. One of the main causes to the decreasing performance of energy is due to reoccurring droughts that decrease the power generated by hydroelectric facilities. To compensate for the decrease, Brazil brought

Brazil has had issues in efficiently providing the required amount of electricity to its citizens at a low cost. One of the main causes to the decreasing performance of energy is due to reoccurring droughts that decrease the power generated by hydroelectric facilities. To compensate for the decrease, Brazil brought into use thermal power plants. The power plants being on average 23.7% more expensive than hydroelectric. Wind energy is potentially an alternative source of energy to compensate for the energy decrease during droughts. Brazil has invested in wind farms recently, but, due to issues with the delivery method, only 34% of wind farms are operational. This paper reviews the potential benefit Brazil could receive from investing more resources into developing and operating wind farms. It also proposes that utilization of the best value approach in delivering wind farms could produce operational wind farms quicker and more efficiently than previously experienced.

ContributorsOliveira, Carlos (Author) / Zulanas, Charles (Author) / Kashiwagi, Dean (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2016-05-20
127852-Thumbnail Image.png
Description

Delays are a major cause for concern in the construction industry in Saudi Arabia. This paper identifies the main causes of delay in infrastructure projects in Mecca, Saudi Arabia, and compares these with projects around the country and other Gulf countries. Data was obtained from 49 infrastructure projects undertaken by

Delays are a major cause for concern in the construction industry in Saudi Arabia. This paper identifies the main causes of delay in infrastructure projects in Mecca, Saudi Arabia, and compares these with projects around the country and other Gulf countries. Data was obtained from 49 infrastructure projects undertaken by the owner and were analyzed quantitatively to understand the severity and causes of delay. 10 risk factors were identified and were grouped into four categories. Average delay in infrastructure projects in Mecca was found to be 39%. The most severe cause of delay was found to be the land acquisition factor. This highlights the critical land ownership and acquisition issues that are prevailing in the city. Additionally, other factors that contribute to delay include contractors’ lack of expertise, re-designing, and haphazard underground utilities (line services). It is concluded that the majority of project delays were caused from the owner's side as compared to contractors, consultants, and other project's stakeholders. This finding matched with the research findings of the Gulf Countries Construction (GCC) Industry's literature. This study fills an important practice and research gap for improving the efficiency in delivering infrastructure projects in the holy city of Mecca and Gulf countries at large.

ContributorsElawi, Ghazi (Author) / Algahtany, Mohammed (Author) / Kashiwagi, Dean (Author) / Ira A. Fulton School of Engineering (Contributor)
Created2016-05-20
127847-Thumbnail Image.png
Description

This paper is part of doctoral research to improve the current Saudi Arabian (SA) procurement system. SA has the largest construction market in the Middle East. However, the use of the traditional procurement system in SA has been identified as one of the causes for poor performance in the delivery

This paper is part of doctoral research to improve the current Saudi Arabian (SA) procurement system. SA has the largest construction market in the Middle East. However, the use of the traditional procurement system in SA has been identified as one of the causes for poor performance in the delivery of construction. The system has been identified as a major risk to the SA government, due to consistent increased costs and delays of up to 70% on projects. A survey was conducted with 1396 participants including engineers, buyers, contractors, consultants, academics, and architects. The purpose of the survey was to identify the validity of the recent claims that the procurement system in SA is broken. The participants work in both the private and government sectors. The survey results showed that the procurement system is a major risk to projects, affects construction projects negatively, and is in need of improvement.

ContributorsAlofi, Ahmed (Author) / Kashiwagi, Jacob (Author) / Kashiwagi, Dean (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-05-20
129298-Thumbnail Image.png
Description

Persistent currents (PCs), one of the most intriguing manifestations of the Aharonov-Bohm (AB) effect, are known to vanish for Schrödinger particles in the presence of random scatterings, e.g., due to classical chaos. But would this still be the case for Dirac fermions? Addressing this question is of significant value due

Persistent currents (PCs), one of the most intriguing manifestations of the Aharonov-Bohm (AB) effect, are known to vanish for Schrödinger particles in the presence of random scatterings, e.g., due to classical chaos. But would this still be the case for Dirac fermions? Addressing this question is of significant value due to the tremendous recent interest in two-dimensional Dirac materials. We investigate relativistic quantum AB rings threaded by a magnetic flux and find that PCs are extremely robust. Even for highly asymmetric rings that host fully developed classical chaos, the amplitudes of PCs are of the same order of magnitude as those for integrable rings, henceforth the term superpersistent currents (SPCs). A striking finding is that the SPCs can be attributed to a robust type of relativistic quantum states, i.e., Dirac whispering gallery modes (WGMs) that carry large angular momenta and travel along the boundaries. We propose an experimental scheme using topological insulators to observe and characterize Dirac WGMs and SPCs, and speculate that these features can potentially be the base for a new class of relativistic qubit systems. Our discovery of WGMs in relativistic quantum systems is remarkable because, although WGMs are common in photonic systems, they are relatively rare in electronic systems.

ContributorsXu, Hongya (Author) / Huang, Liang (Author) / Lai, Ying-Cheng (Author) / Grebogi, Celso (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-03-11
129287-Thumbnail Image.png
Description

The phenomenon of Fano resonance is ubiquitous in a large variety of wave scattering systems, where the resonance profile is typically asymmetric. Whether the parameter characterizing the asymmetry should be complex or real is an issue of great experimental interest. Using coherent quantum transport as a paradigm and taking into

The phenomenon of Fano resonance is ubiquitous in a large variety of wave scattering systems, where the resonance profile is typically asymmetric. Whether the parameter characterizing the asymmetry should be complex or real is an issue of great experimental interest. Using coherent quantum transport as a paradigm and taking into account of the collective contribution from all available scattering channels, we derive a universal formula for the Fano-resonance profile. We show that our formula bridges naturally the traditional Fano formulas with complex and real asymmetry parameters, indicating that the two types of formulas are fundamentally equivalent (except for an offset). The connection also reveals a clear footprint for the conductance resonance during a dephasing process. Therefore, the emergence of complex asymmetric parameter when fitting with experimental data needs to be properly interpreted. Furthermore, we have provided a theory for the width of the resonance, which relates explicitly the width to the degree of localization of the close-by eigenstates and the corresponding coupling matrices or the self-energies caused by the leads. Our work not only resolves the issue about the nature of the asymmetry parameter, but also provides deeper physical insights into the origin of Fano resonance. Since the only assumption in our treatment is that the transport can be described by the Green’s function formalism, our results are also valid for broad disciplines including scattering problems of electromagnetic waves, acoustics, and seismology.

ContributorsHuang, Liang (Author) / Lai, Ying-Cheng (Author) / Luo, Hong-Gang (Author) / Grebogi, Celso (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-01
129254-Thumbnail Image.png
Description

Over the past couple of decades, quality has been an area of increased focus. Multiple models and approaches have been proposed to measure the quality in the construction industry. This paper focuses on determining the quality of one of the types of roofing systems used in the construction industry, i.e.,

Over the past couple of decades, quality has been an area of increased focus. Multiple models and approaches have been proposed to measure the quality in the construction industry. This paper focuses on determining the quality of one of the types of roofing systems used in the construction industry, i.e., sprayed polyurethane foam roofs (SPF roofs). Thirty-seven urethane-coated SPF roofs that were installed in 2005/2006 were visually inspected to measure the percentage of blisters and repairs three times over a period of four years, six years, and seven years. A repairing criteria was established after a six-year mark based on the data that were reported to contractors as vulnerable roofs. Furthermore, the relation between four possible contributing time-of-installation factors—contractor, demographics, season, and difficulty (number of penetrations and size of the roof in square feet) that could affect the quality of the roof was determined. Demographics and difficulty did not affect the quality of the roofs, whereas the contractor and the season when the roof was installed did affect the quality of the roofs.

ContributorsGajjar, Dhaval (Author) / Kashiwagi, Dean (Author) / Sullivan, Kenneth (Author) / Kashiwagi, Jacob (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-04-01
128963-Thumbnail Image.png
Description

Background: Medical and public health scientists are using evolution to devise new strategies to solve major health problems. But based on a 2003 survey, medical curricula may not adequately prepare physicians to evaluate and extend these advances. This study assessed the change in coverage of evolution in North American medical schools

Background: Medical and public health scientists are using evolution to devise new strategies to solve major health problems. But based on a 2003 survey, medical curricula may not adequately prepare physicians to evaluate and extend these advances. This study assessed the change in coverage of evolution in North American medical schools since 2003 and identified opportunities for enriching medical education.

Methods: In 2013, curriculum deans for all North American medical schools were invited to rate curricular coverage and perceived importance of 12 core principles, the extent of anticipated controversy from adding evolution, and the usefulness of 13 teaching resources. Differences between schools were assessed by Pearson’s chi-square test, Student’s t-test, and Spearman’s correlation. Open-ended questions sought insight into perceived barriers and benefits.

Results: Despite repeated follow-up, 60 schools (39%) responded to the survey. There was no evidence of sample bias. The three evolutionary principles rated most important were antibiotic resistance, environmental mismatch, and somatic selection in cancer. While importance and coverage of principles were correlated (r = 0.76, P < 0.01), coverage (at least moderate) lagged behind importance (at least moderate) by an average of 21% (SD = 6%). Compared to 2003, a range of evolutionary principles were covered by 4 to 74% more schools. Nearly half (48%) of responders anticipated igniting controversy at their medical school if they added evolution to their curriculum. The teaching resources ranked most useful were model test questions and answers, case studies, and model curricula for existing courses/rotations. Limited resources (faculty expertise) were cited as the major barrier to adding more evolution, but benefits included a deeper understanding and improved patient care.

Conclusion: North American medical schools have increased the evolution content in their curricula over the past decade. However, coverage is not commensurate with importance. At a few medical schools, anticipated controversy impedes teaching more evolution. Efforts to improve evolution education in medical schools should be directed toward boosting faculty expertise and crafting resources that can be easily integrated into existing curricula.

ContributorsHidaka, Brandon H. (Author) / Asghar, Anila (Author) / Aktipis, C. Athena (Author) / Nesse, Randolph (Author) / Wolpaw, Terry M. (Author) / Skursky, Nicole K. (Author) / Bennett, Katelyn J. (Author) / Beyrouty, Matthew W. (Author) / Schwartz, Mark D. (Author) / Department of Psychology (Contributor)
Created2015-03-08
128511-Thumbnail Image.png
Description

Network reconstruction is a fundamental problem for understanding many complex systems with unknown interaction structures. In many complex systems, there are indirect interactions between two individuals without immediate connection but with common neighbors. Despite recent advances in network reconstruction, we continue to lack an approach for reconstructing complex networks with

Network reconstruction is a fundamental problem for understanding many complex systems with unknown interaction structures. In many complex systems, there are indirect interactions between two individuals without immediate connection but with common neighbors. Despite recent advances in network reconstruction, we continue to lack an approach for reconstructing complex networks with indirect interactions. Here we introduce a two-step strategy to resolve the reconstruction problem, where in the first step, we recover both direct and indirect interactions by employing the Lasso to solve a sparse signal reconstruction problem, and in the second step, we use matrix transformation and optimization to distinguish between direct and indirect interactions. The network structure corresponding to direct interactions can be fully uncovered. We exploit the public goods game occurring on complex networks as a paradigm for characterizing indirect interactions and test our reconstruction approach. We find that high reconstruction accuracy can be achieved for both homogeneous and heterogeneous networks, and a number of empirical networks in spite of insufficient data measurement contaminated by noise. Although a general framework for reconstructing complex networks with arbitrary types of indirect interactions is yet lacking, our approach opens new routes to separate direct and indirect interactions in a representative complex system.

ContributorsHan, Xiao (Author) / Shen, Zhesi (Author) / Wang, Wen-Xu (Author) / Lai, Ying-Cheng (Author) / Grebogi, Celso (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-07-22
128495-Thumbnail Image.png
Description

Recently, the phenomenon of quantum-classical correspondence breakdown was uncovered in optomechanics, where in the classical regime the system exhibits chaos but in the corresponding quantum regime the motion is regular - there appears to be no signature of classical chaos whatsoever in the corresponding quantum system, generating a paradox. We

Recently, the phenomenon of quantum-classical correspondence breakdown was uncovered in optomechanics, where in the classical regime the system exhibits chaos but in the corresponding quantum regime the motion is regular - there appears to be no signature of classical chaos whatsoever in the corresponding quantum system, generating a paradox. We find that transient chaos, besides being a physically meaningful phenomenon by itself, provides a resolution. Using the method of quantum state diffusion to simulate the system dynamics subject to continuous homodyne detection, we uncover transient chaos associated with quantum trajectories. The transient behavior is consistent with chaos in the classical limit, while the long term evolution of the quantum system is regular. Transient chaos thus serves as a bridge for the quantum-classical transition (QCT). Strikingly, as the system transitions from the quantum to the classical regime, the average chaotic transient lifetime increases dramatically (faster than the Ehrenfest time characterizing the QCT for isolated quantum systems). We develop a physical theory to explain the scaling law.

ContributorsWang, Guanglei (Author) / Lai, Ying-Cheng (Author) / Grebogi, Celso (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-10-17