This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 1 - 10 of 72
Filtering by

Clear all filters

141473-Thumbnail Image.png
Description

Critical flicker fusion thresholds (CFFTs) describe when quick amplitude modulations of a light source become undetectable as the frequency of the modulation increases and are thought to underlie a number of visual processing skills, including reading. Here, we compare the impact of two vision-training approaches, one involving contrast sensitivity training

Critical flicker fusion thresholds (CFFTs) describe when quick amplitude modulations of a light source become undetectable as the frequency of the modulation increases and are thought to underlie a number of visual processing skills, including reading. Here, we compare the impact of two vision-training approaches, one involving contrast sensitivity training and the other directional dot-motion training, compared to an active control group trained on Sudoku. The three training paradigms were compared on their effectiveness for altering CFFT. Directional dot-motion and contrast sensitivity training resulted in significant improvement in CFFT, while the Sudoku group did not yield significant improvement. This finding indicates that dot-motion and contrast sensitivity training similarly transfer to effect changes in CFFT. The results, combined with prior research linking CFFT to high-order cognitive processes such as reading ability, and studies showing positive impact of both dot-motion and contrast sensitivity training in reading, provide a possible mechanistic link of how these different training approaches impact reading abilities.

ContributorsZhou, Tianyou (Author) / Nanez, Jose (Author) / Zimmerman, Daniel (Author) / Holloway, Steven (Author) / Seitz, Aaron (Author) / New College of Interdisciplinary Arts and Sciences (Contributor)
Created2016-10-26
141474-Thumbnail Image.png
Description

Although autism spectrum disorder (ASD) is a serious lifelong condition, its underlying neural mechanism remains unclear. Recently, neuroimaging-based classifiers for ASD and typically developed (TD) individuals were developed to identify the abnormality of functional connections (FCs). Due to over-fitting and interferential effects of varying measurement conditions and demographic distributions, no

Although autism spectrum disorder (ASD) is a serious lifelong condition, its underlying neural mechanism remains unclear. Recently, neuroimaging-based classifiers for ASD and typically developed (TD) individuals were developed to identify the abnormality of functional connections (FCs). Due to over-fitting and interferential effects of varying measurement conditions and demographic distributions, no classifiers have been strictly validated for independent cohorts. Here we overcome these difficulties by developing a novel machine-learning algorithm that identifies a small number of FCs that separates ASD versus TD. The classifier achieves high accuracy for a Japanese discovery cohort and demonstrates a remarkable degree of generalization for two independent validation cohorts in the USA and Japan. The developed ASD classifier does not distinguish individuals with major depressive disorder and attention-deficit hyperactivity disorder from their controls but moderately distinguishes patients with schizophrenia from their controls. The results leave open the viable possibility of exploring neuroimaging-based dimensions quantifying the multiple-disorder spectrum.

ContributorsYahata, Noriaki (Author) / Morimoto, Jun (Author) / Hashimoto, Ryuichiro (Author) / Lisi, Giuseppe (Author) / Shibata, Kazuhisa (Author) / Kawakubo, Yuki (Author) / Kuwabara, Hitoshi (Author) / Kuroda, Miho (Author) / Yamada, Takashi (Author) / Megumi, Fukuda (Author) / Imamizu, Hiroshi (Author) / Nanez, Jose (Author) / Takahashi, Hidehiko (Author) / Okamoto, Yasumasa (Author) / Kasai, Kiyoto (Author) / Kato, Nobumasa (Author) / Sasaki, Yuka (Author) / Watanabe, Takeo (Author) / Kawato, Mitsuo (Author) / New College of Interdisciplinary Arts and Sciences (Contributor)
Created2016-04-14
141475-Thumbnail Image.png
Description

The evolution of cooperation is a fundamental problem in biology, especially for non-relatives, where indirect fitness benefits cannot counter within-group inequalities. Multilevel selection models show how cooperation can evolve if it generates a group-level advantage, even when cooperators are disadvantaged within their group. This allows the possibility of group selection,

The evolution of cooperation is a fundamental problem in biology, especially for non-relatives, where indirect fitness benefits cannot counter within-group inequalities. Multilevel selection models show how cooperation can evolve if it generates a group-level advantage, even when cooperators are disadvantaged within their group. This allows the possibility of group selection, but few examples have been described in nature. Here we show that group selection can explain the evolution of cooperative nest founding in the harvester ant Pogonomyrmex californicus. Through most of this species’ range, colonies are founded by single queens, but in some populations nests are instead founded by cooperative groups of unrelated queens. In mixed groups of cooperative and single-founding queens, we found that aggressive individuals had a survival advantage within their nest, but foundress groups with such non-cooperators died out more often than those with only cooperative members. An agent-based model shows that the between-group advantage of the cooperative phenotype drives it to fixation, despite its within-group disadvantage, but only when population density is high enough to make between-group competition intense. Field data show higher nest density in a population where cooperative founding is common, consistent with greater density driving the evolution of cooperative foundation through group selection.

ContributorsShaffer, Zachary (Author) / Sasaki, Takao (Author) / Haney, Brian (Author) / Janssen, Marco (Author) / Pratt, Stephen (Author) / Fewell, Jennifer (Author) / College of Liberal Arts and Sciences (Contributor)
Created2016-07-28
Description

Human societies are unique in the level of cooperation among non-kin. Evolutionary models explaining this behavior typically assume pure strategies of cooperation and defection. Behavioral experiments, however, demonstrate that humans are typically conditional co-operators who have other-regarding preferences. Building on existing models on the evolution of cooperation and costly punishment,

Human societies are unique in the level of cooperation among non-kin. Evolutionary models explaining this behavior typically assume pure strategies of cooperation and defection. Behavioral experiments, however, demonstrate that humans are typically conditional co-operators who have other-regarding preferences. Building on existing models on the evolution of cooperation and costly punishment, we use a utilitarian formulation of agent decision making to explore conditions that support the emergence of cooperative behavior. Our results indicate that cooperation levels are significantly lower for larger groups in contrast to the original pure strategy model. Here, defection behavior not only diminishes the public good, but also affects the expectations of group members leading conditional co-operators to change their strategies. Hence defection has a more damaging effect when decisions are based on expectations and not only pure strategies.

Created2014-07-01
129336-Thumbnail Image.png
Description

Cognitive theories in visual attention and perception, categorization, and memory often critically rely on concepts of similarity among objects, and empirically require measures of “sameness” among their stimuli. For instance, a researcher may require similarity estimates among multiple exemplars of a target category in visual search, or targets and lures

Cognitive theories in visual attention and perception, categorization, and memory often critically rely on concepts of similarity among objects, and empirically require measures of “sameness” among their stimuli. For instance, a researcher may require similarity estimates among multiple exemplars of a target category in visual search, or targets and lures in recognition memory. Quantifying similarity, however, is challenging when everyday items are the desired stimulus set, particularly when researchers require several different pictures from the same category. In this article, we document a new multidimensional scaling database with similarity ratings for 240 categories, each containing color photographs of 16–17 exemplar objects. We collected similarity ratings using the spatial arrangement method. Reports include: the multidimensional scaling solutions for each category, up to five dimensions, stress and fit measures, coordinate locations for each stimulus, and two new classifications. For each picture, we categorized the item's prototypicality, indexed by its proximity to other items in the space. We also classified pairs of images along a continuum of similarity, by assessing the overall arrangement of each MDS space. These similarity ratings will be useful to any researcher that wishes to control the similarity of experimental stimuli according to an objective quantification of “sameness.”

ContributorsHout, Michael C. (Author) / Goldinger, Stephen (Author) / Brady, Kyle (Author) / Department of Psychology (Contributor)
Created2014-11-12
129358-Thumbnail Image.png
Description

We use an agent-based model to analyze the effects of spatial heterogeneity and agents’ mobility on social-ecological outcomes. Our model is a stylized representation of a dynamic population of agents moving and harvesting a renewable resource. Cooperators (agents who harvest an amount close to the maximum sustainable yield) and selfish

We use an agent-based model to analyze the effects of spatial heterogeneity and agents’ mobility on social-ecological outcomes. Our model is a stylized representation of a dynamic population of agents moving and harvesting a renewable resource. Cooperators (agents who harvest an amount close to the maximum sustainable yield) and selfish agents (those who harvest an amount greater than the sustainable yield) are simulated in the model. Three indicators of the outcomes of the system are analyzed: the number of settlements, the resource level, and the proportion of cooperators in the population. Our paper adds a more realistic approach to previous studies on the evolution of cooperation by considering a social-ecological system in which agents move in a landscape to harvest a renewable resource. Our results conclude that resource dynamics play an important role when studying levels of cooperation and resource use. Our simulations show that the agents’ mobility significantly affects the outcomes of the system. This response is nonlinear and very sensible to the type of spatial distribution of the resource richness. In our simulations, better outcomes of long-term sustainability of the resource are obtained with moderate agent mobility and cooperation is enhanced in harsh environments with low resource level in which cooperative groups have natural boundaries fostered by agents’ low mobility.

ContributorsPerez, Irene (Author) / Janssen, Marco (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-01-24
129248-Thumbnail Image.png
Description

During the last 40 years evidence from systematic case study analysis and behavioral experiments have provided a comprehensive perspective on how communities can manage common resources in a sustainable way. The conventional theory based on selfish rational actors cannot explain empirical observations. A more comprehensive theoretical framework of human behavior

During the last 40 years evidence from systematic case study analysis and behavioral experiments have provided a comprehensive perspective on how communities can manage common resources in a sustainable way. The conventional theory based on selfish rational actors cannot explain empirical observations. A more comprehensive theoretical framework of human behavior is emerging that include concepts such as trust, conditional cooperation, other-regarding preferences, social norms, and reputation. The new behavioral perspective also demonstrates that behavioral responses depend on social and biophysical context.

Created2015-02-01
129287-Thumbnail Image.png
Description

The phenomenon of Fano resonance is ubiquitous in a large variety of wave scattering systems, where the resonance profile is typically asymmetric. Whether the parameter characterizing the asymmetry should be complex or real is an issue of great experimental interest. Using coherent quantum transport as a paradigm and taking into

The phenomenon of Fano resonance is ubiquitous in a large variety of wave scattering systems, where the resonance profile is typically asymmetric. Whether the parameter characterizing the asymmetry should be complex or real is an issue of great experimental interest. Using coherent quantum transport as a paradigm and taking into account of the collective contribution from all available scattering channels, we derive a universal formula for the Fano-resonance profile. We show that our formula bridges naturally the traditional Fano formulas with complex and real asymmetry parameters, indicating that the two types of formulas are fundamentally equivalent (except for an offset). The connection also reveals a clear footprint for the conductance resonance during a dephasing process. Therefore, the emergence of complex asymmetric parameter when fitting with experimental data needs to be properly interpreted. Furthermore, we have provided a theory for the width of the resonance, which relates explicitly the width to the degree of localization of the close-by eigenstates and the corresponding coupling matrices or the self-energies caused by the leads. Our work not only resolves the issue about the nature of the asymmetry parameter, but also provides deeper physical insights into the origin of Fano resonance. Since the only assumption in our treatment is that the transport can be described by the Green’s function formalism, our results are also valid for broad disciplines including scattering problems of electromagnetic waves, acoustics, and seismology.

ContributorsHuang, Liang (Author) / Lai, Ying-Cheng (Author) / Luo, Hong-Gang (Author) / Grebogi, Celso (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-01-01
129298-Thumbnail Image.png
Description

Persistent currents (PCs), one of the most intriguing manifestations of the Aharonov-Bohm (AB) effect, are known to vanish for Schrödinger particles in the presence of random scatterings, e.g., due to classical chaos. But would this still be the case for Dirac fermions? Addressing this question is of significant value due

Persistent currents (PCs), one of the most intriguing manifestations of the Aharonov-Bohm (AB) effect, are known to vanish for Schrödinger particles in the presence of random scatterings, e.g., due to classical chaos. But would this still be the case for Dirac fermions? Addressing this question is of significant value due to the tremendous recent interest in two-dimensional Dirac materials. We investigate relativistic quantum AB rings threaded by a magnetic flux and find that PCs are extremely robust. Even for highly asymmetric rings that host fully developed classical chaos, the amplitudes of PCs are of the same order of magnitude as those for integrable rings, henceforth the term superpersistent currents (SPCs). A striking finding is that the SPCs can be attributed to a robust type of relativistic quantum states, i.e., Dirac whispering gallery modes (WGMs) that carry large angular momenta and travel along the boundaries. We propose an experimental scheme using topological insulators to observe and characterize Dirac WGMs and SPCs, and speculate that these features can potentially be the base for a new class of relativistic qubit systems. Our discovery of WGMs in relativistic quantum systems is remarkable because, although WGMs are common in photonic systems, they are relatively rare in electronic systems.

ContributorsXu, Hongya (Author) / Huang, Liang (Author) / Lai, Ying-Cheng (Author) / Grebogi, Celso (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-03-11
Description

This essay uses census data from the eighteenth century to examine the leadership role of caciques in the Guaraní missions. Cacique succession between 1735 and 1759 confirms that the position of cacique transitioned from the Guaraníes’ flexible interpretation of hereditary succession to the Jesuits’ rigid idea of primogenitor (father to

This essay uses census data from the eighteenth century to examine the leadership role of caciques in the Guaraní missions. Cacique succession between 1735 and 1759 confirms that the position of cacique transitioned from the Guaraníes’ flexible interpretation of hereditary succession to the Jesuits’ rigid idea of primogenitor (father to eldest son) succession. This essay argues that scholars overstate the caciques’ leadership role in the Guaraní missions. Adherence to primogenitor succession did not take into account a candidate's leadership qualities, and thus, some caciques functioned as placeholders for organizing the mission population and calculating tribute and not as active leaders. An assortment of other Guaraní leadership positions compensated for this weakness by providing both access to leadership roles for non-caciques who possessed leadership qualities but not the proper bloodline and additional leadership opportunities for more capable caciques. By taking into account leadership qualities and not just descent, these positions provided flexibility and reflected continuity with pre-contact Guaraní ideas about leadership.

Created2013-11-30